On exact extensions of tournaments
Prikladnaâ diskretnaâ matematika, no. 10 (2009).

Voir la notice de l'article provenant de la source Math-Net.Ru

Graph $G^{*}=(V^{*},\alpha)$ is said to be an exact $k$-extension of a graph $G=(V,\alpha)$ if every graph obtained by removing any $k$ vertexes from $G^{*}$ and graph $G$ are isomorphic. We study the problem of constructing exact $k$-extension of tournaments. Two families of tournaments with their exact extensions are presented. Further, we introduce a special graph operation that helps to construct exact extensions using two other families.
@article{PDM_2009_10_a50,
     author = {A. A. Dolgov},
     title = {On exact extensions of tournaments},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {98},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a50/}
}
TY  - JOUR
AU  - A. A. Dolgov
TI  - On exact extensions of tournaments
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 98
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a50/
LA  - ru
ID  - PDM_2009_10_a50
ER  - 
%0 Journal Article
%A A. A. Dolgov
%T On exact extensions of tournaments
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 98
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a50/
%G ru
%F PDM_2009_10_a50
A. A. Dolgov. On exact extensions of tournaments. Prikladnaâ diskretnaâ matematika, no. 10 (2009). http://geodesic.mathdoc.fr/item/PDM_2009_10_a50/

[1] Abrosimov M. B., “Minimalnye rasshireniya tranzitivnykh turnirov”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2006, no. 17, 187–190

[2] Abrosimov M. B., Dolgov A. A., “Tochnye rasshireniya nekotorykh turnirov”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2007, no. 23, 211–216