On exact extensions of tournaments
Prikladnaâ diskretnaâ matematika, no. 10 (2009)
Voir la notice de l'article provenant de la source Math-Net.Ru
Graph $G^{*}=(V^{*},\alpha)$ is said to be an exact $k$-extension of a graph $G=(V,\alpha)$ if every graph obtained by removing any $k$ vertexes from $G^{*}$ and graph $G$ are isomorphic. We study the problem of constructing exact $k$-extension of tournaments. Two families of tournaments with their exact extensions are presented. Further, we introduce a special graph operation that helps to construct exact extensions using two other families.
@article{PDM_2009_10_a50,
author = {A. A. Dolgov},
title = {On exact extensions of tournaments},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {98},
publisher = {mathdoc},
number = {10},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a50/}
}
A. A. Dolgov. On exact extensions of tournaments. Prikladnaâ diskretnaâ matematika, no. 10 (2009). http://geodesic.mathdoc.fr/item/PDM_2009_10_a50/