Discrete logarithm problem in subgroups of prime order
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 87-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The abilities of known algorithms to solve the discrete logarithm problem in subgroups of prime order are discussed. The Adleman's method modification is proposed and its correctness is stated.
@article{PDM_2009_10_a44,
     author = {I. A. Pankratova},
     title = {Discrete logarithm problem in subgroups of prime order},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {87--90},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/}
}
TY  - JOUR
AU  - I. A. Pankratova
TI  - Discrete logarithm problem in subgroups of prime order
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 87
EP  - 90
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/
LA  - ru
ID  - PDM_2009_10_a44
ER  - 
%0 Journal Article
%A I. A. Pankratova
%T Discrete logarithm problem in subgroups of prime order
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 87-90
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/
%G ru
%F PDM_2009_10_a44
I. A. Pankratova. Discrete logarithm problem in subgroups of prime order. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 87-90. http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/

[1] Menezes A. J., Van Oorshot P. C., Vanstone S. A., Handbook of Applied Cryptography, Series on Discrete Mathematics and Its Applications, CRC Press, N.Y., 1997 | MR | Zbl

[2] Belov A. G., “Issledovanie algoritma diskretnogo logarifmirovaniya Adlemana”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2005, no. 14, 45–49