Discrete logarithm problem in subgroups of prime order
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 87-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The abilities of known algorithms to solve the discrete logarithm problem in subgroups of prime order are discussed. The Adleman's method modification is proposed and its correctness is stated.
@article{PDM_2009_10_a44,
     author = {I. A. Pankratova},
     title = {Discrete logarithm problem in subgroups of prime order},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {87--90},
     year = {2009},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/}
}
TY  - JOUR
AU  - I. A. Pankratova
TI  - Discrete logarithm problem in subgroups of prime order
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 87
EP  - 90
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/
LA  - ru
ID  - PDM_2009_10_a44
ER  - 
%0 Journal Article
%A I. A. Pankratova
%T Discrete logarithm problem in subgroups of prime order
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 87-90
%N 10
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/
%G ru
%F PDM_2009_10_a44
I. A. Pankratova. Discrete logarithm problem in subgroups of prime order. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 87-90. http://geodesic.mathdoc.fr/item/PDM_2009_10_a44/

[1] Menezes A. J., Van Oorshot P. C., Vanstone S. A., Handbook of Applied Cryptography, Series on Discrete Mathematics and Its Applications, CRC Press, N.Y., 1997 | MR | Zbl

[2] Belov A. G., “Issledovanie algoritma diskretnogo logarifmirovaniya Adlemana”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2005, no. 14, 45–49