Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 84-87
Cet article a éte moissonné depuis la source Math-Net.Ru
This work deals with a way of eliminating polynomial equations in a single unknown without integer roots with their right parts' known spectrum determined by estimation based on the difference between the polynom's maximum and minimum values in a certain interval. Ideas introduced by Gauss and developed to the case of any prime numbers and any residues were used to elaborate this method. The solutions of congruence in a single variable which demonstrate the elimination method potential are also given. A program in the packet of symbolic calculations is offered for the experimental estimation of the necessary length of the prime numbers list used for equation elimination. The use of a shorter list allows to expect the algorithm's time complexity reduction when this elimination is applied.
@article{PDM_2009_10_a43,
author = {Yu. L. Zachesov and N. P. Salikhov},
title = {Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {84--87},
year = {2009},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a43/}
}
TY - JOUR AU - Yu. L. Zachesov AU - N. P. Salikhov TI - Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots JO - Prikladnaâ diskretnaâ matematika PY - 2009 SP - 84 EP - 87 IS - 10 UR - http://geodesic.mathdoc.fr/item/PDM_2009_10_a43/ LA - ru ID - PDM_2009_10_a43 ER -
%0 Journal Article %A Yu. L. Zachesov %A N. P. Salikhov %T Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots %J Prikladnaâ diskretnaâ matematika %D 2009 %P 84-87 %N 10 %U http://geodesic.mathdoc.fr/item/PDM_2009_10_a43/ %G ru %F PDM_2009_10_a43
Yu. L. Zachesov; N. P. Salikhov. Experimental program estimation for the quantity of prime numbers necessary for elimination of polynomial equations without integer roots. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 84-87. http://geodesic.mathdoc.fr/item/PDM_2009_10_a43/
[1] Zachesov Yu. L., Salikhov N. P., “O metode resheniya polinomialnogo sravneniya $p(x)=0\mod N$”, Obozrenie prikladnoi i promyshlennoi matematiki, 15:5 (2008), 769–784 | MR
[2] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976 | MR
[3] Knut D., Iskusstvo programmirovaniya dlya EVM. T. 3. Sortirovka i poisk, Mir, M., 1978, 844 pp. | MR | Zbl