Properties of bent functions with minimal distance
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 9-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimal Hamming distance between distinct bent functions is obtained. We describe all bent functions on the minimal distance from the given one. For some bent functions we prove that there exist bent functions on the minimal distance from them.
@article{PDM_2009_10_a2,
     author = {N. A. Kolomeets and A. V. Pavlov and A. A. Levin},
     title = {Properties of bent functions with minimal distance},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {9--10},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a2/}
}
TY  - JOUR
AU  - N. A. Kolomeets
AU  - A. V. Pavlov
AU  - A. A. Levin
TI  - Properties of bent functions with minimal distance
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 9
EP  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a2/
LA  - ru
ID  - PDM_2009_10_a2
ER  - 
%0 Journal Article
%A N. A. Kolomeets
%A A. V. Pavlov
%A A. A. Levin
%T Properties of bent functions with minimal distance
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 9-10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a2/
%G ru
%F PDM_2009_10_a2
N. A. Kolomeets; A. V. Pavlov; A. A. Levin. Properties of bent functions with minimal distance. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 9-10. http://geodesic.mathdoc.fr/item/PDM_2009_10_a2/

[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR

[2] Tokareva N. N., “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikladnaya diskretnaya matematika, 2009, no. 1, 15–37

[3] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl