Properties of bent functions with minimal distance
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 9-10
The minimal Hamming distance between distinct bent functions is obtained. We describe all bent functions on the minimal distance from the given one. For some bent functions we prove that there exist bent functions on the minimal distance from them.
@article{PDM_2009_10_a2,
author = {N. A. Kolomeets and A. V. Pavlov and A. A. Levin},
title = {Properties of bent functions with minimal distance},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {9--10},
year = {2009},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a2/}
}
N. A. Kolomeets; A. V. Pavlov; A. A. Levin. Properties of bent functions with minimal distance. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 9-10. http://geodesic.mathdoc.fr/item/PDM_2009_10_a2/
[1] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004, 470 pp. | MR
[2] Tokareva N. N., “Bent-funktsii: rezultaty i prilozheniya. Obzor rabot”, Prikladnaya diskretnaya matematika, 2009, no. 1, 15–37
[3] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl