The generalized automorphisms of Reed-Muller code and McEliece–Sidelnikov public key cryptosystem
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 36-37
Cet article a éte moissonné depuis la source Math-Net.Ru
The McEliece–Sidelnikov public key cryptosystem is the modification of the McEliece public key cryptosystem using $u$-fold Reed–Muller code. In the work, we investigate the structure of public key sets of the cryptosystem in the case of any number of blocks $u$. In case $u=2$, the equivalence classes of private keys with representatives of a special kind are described.
@article{PDM_2009_10_a17,
author = {I. V. Chizhov},
title = {The generalized automorphisms of {Reed-Muller} code and {McEliece{\textendash}Sidelnikov} public key cryptosystem},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {36--37},
year = {2009},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a17/}
}
I. V. Chizhov. The generalized automorphisms of Reed-Muller code and McEliece–Sidelnikov public key cryptosystem. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 36-37. http://geodesic.mathdoc.fr/item/PDM_2009_10_a17/
[1] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | MR | Zbl
[2] Sidelnikov V. M., Shestakov S. O., “O sisteme shifrovaniya, postroennoi na osnove obobschennykh kodov Rida–Solomona”, Diskretnaya matematika, 4:3 (1992), 57–63 | MR
[3] Karpunin G. A., “O klyuchevom prostranstve kriptosistemy Mak-Elisa na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 16:2 (2004), 79–84 | MR | Zbl
[4] McEliece R. J., A public-key cryptosystem based on algebraic coding theory, The Deep Space Network Progress Report, DSN PR 42–44, January and February, 1978, 114–116
[5] Mak-Vilyams F. Dzh., Sloen N. Dzh., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979