On complexity of formal coding method for analysis of generator with monocycle substitutional transition function
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 32-34
Autonomous automata are investigated where automaton states are binary $n$-dimensional vectors and transition function releases monocycle substitution. The complexity $T_{n}$ of solving gamma generator equations system by formal coding method is estimated assuming the number of equations is not constrained. Bounds of $T_n$ are obtained by estimating line complexity and monomial sets order for output functions sequence. It is stated that $\mathrm{TL}(2^{n-1}), where $\mathrm{TL}(m)$ is the complexity of solving linear equations system of size $m\times m$ over field $\mathrm{GF}(2)$.
@article{PDM_2009_10_a15,
author = {V. M. Fomichev},
title = {On complexity of formal coding method for analysis of generator with monocycle substitutional transition function},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {32--34},
year = {2009},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a15/}
}
TY - JOUR AU - V. M. Fomichev TI - On complexity of formal coding method for analysis of generator with monocycle substitutional transition function JO - Prikladnaâ diskretnaâ matematika PY - 2009 SP - 32 EP - 34 IS - 10 UR - http://geodesic.mathdoc.fr/item/PDM_2009_10_a15/ LA - ru ID - PDM_2009_10_a15 ER -
V. M. Fomichev. On complexity of formal coding method for analysis of generator with monocycle substitutional transition function. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 32-34. http://geodesic.mathdoc.fr/item/PDM_2009_10_a15/
[1] Fomichev V. M., Diskretnaya matematika i kriptologiya, DIALOG-MIFI, M., 2003
[2] Shamir A., Patarin J., Courtois N., and Klimov A., “Efficient Algorithms for solving Overdefined Systems of Multivariate Polynomial Equations”, Eurocrypt'2000, LNCS, 1807, Springer, 2001, 392–407 | MR