The degree of proximity of the Boolean function reduced representation to the class of monomial functions according to basis selection
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 7-9
It is known that a definition of Boolean bent functions is invariant under any linear nonsingular transformation of the variables. This paper investigates the effect of the basis selection of the Boolean function reduced representation on it's property “to be a hyper-bent function”. The following results are obtained: 1) for any bent function of 4 variables there exist two bases of the vector space $\left({\mathbb{F}_{2^4}}\right)_{\mathbb{F}_2}$ such that the reduced representation of this function in the first basis is a hyper-bent function, and in the second basis is not. 2) For any even $n>4$ there exist two bases of the vector space $\left({\mathbb{F}_{2^n}}\right)_{\mathbb{F}_2}$ and the function of $n$ variables such that the reduced representation of this function in the first basis is a hyper-bent function, and in the second basis is not.
@article{PDM_2009_10_a1,
author = {A. V. Ivanov},
title = {The degree of proximity of the {Boolean} function reduced representation to the class of monomial functions according to basis selection},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {7--9},
year = {2009},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a1/}
}
TY - JOUR AU - A. V. Ivanov TI - The degree of proximity of the Boolean function reduced representation to the class of monomial functions according to basis selection JO - Prikladnaâ diskretnaâ matematika PY - 2009 SP - 7 EP - 9 IS - 10 UR - http://geodesic.mathdoc.fr/item/PDM_2009_10_a1/ LA - ru ID - PDM_2009_10_a1 ER -
%0 Journal Article %A A. V. Ivanov %T The degree of proximity of the Boolean function reduced representation to the class of monomial functions according to basis selection %J Prikladnaâ diskretnaâ matematika %D 2009 %P 7-9 %N 10 %U http://geodesic.mathdoc.fr/item/PDM_2009_10_a1/ %G ru %F PDM_2009_10_a1
A. V. Ivanov. The degree of proximity of the Boolean function reduced representation to the class of monomial functions according to basis selection. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 7-9. http://geodesic.mathdoc.fr/item/PDM_2009_10_a1/
[1] Kuzmin A. S., Markov V. T., Nechaev A. A., Shishkov A. B., “Priblizhenie bulevykh funktsii monomialnymi”, Diskretnaya matematika, 18:1 (2006), 9–29 | MR | Zbl
[2] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MNTsMO, M., 2004, 470 pp. | MR
[3] Youssef A. M., Gong G., “Hyper-bent functions”, Proceedings of Advances in Cryptology, EUROCRYPT'2001, Lect. Notes in Comp. Sci., 2045, Springer Verlag, New York, 2001, 406–419 | MR | Zbl