Solving parallel equations over $\omega$-regular languages
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 6-7

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of deriving a component of a system that combined with a known part of a system meets the given specification. We assume that the behavior of the overall system and of its parts is described by Buchi automata that accept $\omega$-regular languages, i.e. languages containing infinite words. The problem of deriving an unknown component can be casted into the problem of solving language equations over $\omega$-regular languages. However solving techniques for equations over regular languages cannot be directly applied to the case of $\omega$-regular languages.
@article{PDM_2009_10_a0,
     author = {V. G. Bushkov and N. V. Evtushenko},
     title = {Solving parallel equations over $\omega$-regular languages},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {6--7},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a0/}
}
TY  - JOUR
AU  - V. G. Bushkov
AU  - N. V. Evtushenko
TI  - Solving parallel equations over $\omega$-regular languages
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 6
EP  - 7
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a0/
LA  - ru
ID  - PDM_2009_10_a0
ER  - 
%0 Journal Article
%A V. G. Bushkov
%A N. V. Evtushenko
%T Solving parallel equations over $\omega$-regular languages
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 6-7
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a0/
%G ru
%F PDM_2009_10_a0
V. G. Bushkov; N. V. Evtushenko. Solving parallel equations over $\omega$-regular languages. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 6-7. http://geodesic.mathdoc.fr/item/PDM_2009_10_a0/