On $c$-width of finite noncyclic groups
Prikladnaâ diskretnaâ matematika, no. 2 (2008), pp. 23-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties of finite noncyclic groups cover with maximal cyclic subgroups are investigated. Method to construct group of linear substitutions of degree $2^n$ which has $c$-width not less than $2^n$ is proposed.
@article{PDM_2008_2_a5,
     author = {V. M. Fomichev},
     title = {On $c$-width of finite noncyclic groups},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {23--27},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2008_2_a5/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - On $c$-width of finite noncyclic groups
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2008
SP  - 23
EP  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2008_2_a5/
LA  - ru
ID  - PDM_2008_2_a5
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T On $c$-width of finite noncyclic groups
%J Prikladnaâ diskretnaâ matematika
%D 2008
%P 23-27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2008_2_a5/
%G ru
%F PDM_2008_2_a5
V. M. Fomichev. On $c$-width of finite noncyclic groups. Prikladnaâ diskretnaâ matematika, no. 2 (2008), pp. 23-27. http://geodesic.mathdoc.fr/item/PDM_2008_2_a5/