Quasi-cyclic alternant codes and analysis of their security in cryptographic applications
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 147-152
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper presents an overview of quasi-cyclic alternant codes and their structural analysis regarding the classification of automorphisms. Also, we describe in detail methods for restoring the structure of a given code. The attractiveness of the family of considered codes lies in its cryptographic applications, and, as in theory, in reducing the key length of post-quantum code-based schemes. In addition, this method of constructing codes is universal and can be used to obtain alternant codes of quasi-cyclic algebraic-geometric codes associated with an arbitrary curve with a known group of automorphisms. However, as shown in the work, as a result of constructing quasi-cyclic alternant codes, it becomes possible to reduce the key security of the source code to a code with smaller parameters, which may not be resistant to a structural attack.
Mots-clés :
quasi-cyclic codes, alternant codes, invariant codes, automorphism group of a code.
Keywords: algebraic-geometric code, function fields
Keywords: algebraic-geometric code, function fields
@article{PDMA_2024_17_a37,
author = {A. A. Kuninets},
title = {Quasi-cyclic alternant codes and analysis of their security in cryptographic applications},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {147--152},
year = {2024},
number = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a37/}
}
TY - JOUR AU - A. A. Kuninets TI - Quasi-cyclic alternant codes and analysis of their security in cryptographic applications JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2024 SP - 147 EP - 152 IS - 17 UR - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a37/ LA - ru ID - PDMA_2024_17_a37 ER -
A. A. Kuninets. Quasi-cyclic alternant codes and analysis of their security in cryptographic applications. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 147-152. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a37/
[1] Barelli E., On the security of short McEliece keys from algebraic and algebraic geometry codes with automorphisms, University of Paris-Saclay, France, 2018 (in French)
[2] Kuninets A. A., Malygina E. S., “Vychislenie par, ispravlyayuschikh oshibki, dlya algebrogeometricheskogo koda”, Prikladnaya diskretnaya matematika, 2023, no. 63, 65–90 | MR
[3] Malygina E. S., Kuninets A. A., Ratochka V. L. i dr., “Algebrogeometricheskie kody i dekodirovanie na osnove par, ispravlyayuschikh oshibki”, Prikladnaya diskretnaya matematika, 2023, no. 62, 83–105 | MR
[4] Stichtenoth H., “On automorphisms of geometric Goppa codes”, J. Algebra, 130:1 (1990), 113–121 | DOI | MR | Zbl