Quasi-cyclic alternant codes and analysis of their security in cryptographic applications
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 147-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an overview of quasi-cyclic alternant codes and their structural analysis regarding the classification of automorphisms. Also, we describe in detail methods for restoring the structure of a given code. The attractiveness of the family of considered codes lies in its cryptographic applications, and, as in theory, in reducing the key length of post-quantum code-based schemes. In addition, this method of constructing codes is universal and can be used to obtain alternant codes of quasi-cyclic algebraic-geometric codes associated with an arbitrary curve with a known group of automorphisms. However, as shown in the work, as a result of constructing quasi-cyclic alternant codes, it becomes possible to reduce the key security of the source code to a code with smaller parameters, which may not be resistant to a structural attack.
Mots-clés : quasi-cyclic codes, alternant codes, invariant codes, automorphism group of a code.
Keywords: algebraic-geometric code, function fields
@article{PDMA_2024_17_a37,
     author = {A. A. Kuninets},
     title = {Quasi-cyclic alternant codes and analysis of their security in cryptographic applications},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {147--152},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a37/}
}
TY  - JOUR
AU  - A. A. Kuninets
TI  - Quasi-cyclic alternant codes and analysis of their security in cryptographic applications
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 147
EP  - 152
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a37/
LA  - ru
ID  - PDMA_2024_17_a37
ER  - 
%0 Journal Article
%A A. A. Kuninets
%T Quasi-cyclic alternant codes and analysis of their security in cryptographic applications
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 147-152
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a37/
%G ru
%F PDMA_2024_17_a37
A. A. Kuninets. Quasi-cyclic alternant codes and analysis of their security in cryptographic applications. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 147-152. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a37/

[1] Barelli E., On the security of short McEliece keys from algebraic and algebraic geometry codes with automorphisms, University of Paris-Saclay, France, 2018 (in French)

[2] Kuninets A. A., Malygina E. S., “Vychislenie par, ispravlyayuschikh oshibki, dlya algebrogeometricheskogo koda”, Prikladnaya diskretnaya matematika, 2023, no. 63, 65–90 | MR

[3] Malygina E. S., Kuninets A. A., Ratochka V. L. i dr., “Algebrogeometricheskie kody i dekodirovanie na osnove par, ispravlyayuschikh oshibki”, Prikladnaya diskretnaya matematika, 2023, no. 62, 83–105 | MR

[4] Stichtenoth H., “On automorphisms of geometric Goppa codes”, J. Algebra, 130:1 (1990), 113–121 | DOI | MR | Zbl