Matrix of transition probabilities of differentials of 8-round Luby~--- Rackoff scheme
Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 79-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Luby — Rackoff scheme is a Markov cipher. The eighth power of the matrix of transition probabilities of differentials of the Lyubi — Rakoff scheme is calculated, estimates of the volume of material for a $j$-vector ($j=1,2$) discriminative attack are given for an $8$-round scheme in the model of independent two-block texts.
Keywords: Markov block ciphers, Luby — Rackoff scheme, distinguishing attack, transition probabilities of differentials.
@article{PDMA_2024_17_a17,
     author = {M. M. Glukhov and O. V. Denisov},
     title = {Matrix of transition probabilities of differentials of 8-round {Luby~---} {Rackoff} scheme},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {79--81},
     publisher = {mathdoc},
     number = {17},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2024_17_a17/}
}
TY  - JOUR
AU  - M. M. Glukhov
AU  - O. V. Denisov
TI  - Matrix of transition probabilities of differentials of 8-round Luby~--- Rackoff scheme
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2024
SP  - 79
EP  - 81
IS  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2024_17_a17/
LA  - ru
ID  - PDMA_2024_17_a17
ER  - 
%0 Journal Article
%A M. M. Glukhov
%A O. V. Denisov
%T Matrix of transition probabilities of differentials of 8-round Luby~--- Rackoff scheme
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2024
%P 79-81
%N 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2024_17_a17/
%G ru
%F PDMA_2024_17_a17
M. M. Glukhov; O. V. Denisov. Matrix of transition probabilities of differentials of 8-round Luby~--- Rackoff scheme. Prikladnaya Diskretnaya Matematika. Supplement, no. 17 (2024), pp. 79-81. http://geodesic.mathdoc.fr/item/PDMA_2024_17_a17/

[1] Denisov O. V., “Ataka razlicheniya na 4 raunda shifra Lyubi — Rakoff po raznostyam dvublochnykh tekstov”, Prikladnaya diskretnaya matematika. Prilozhenie, 2023, no. 16, 32–35

[2] Luby M. and Rackoff C., “How to construct pseudorandom permutations from pseudorandom functions”, SIAM J. Comput., 17 (1988), 373–386 | DOI | MR | Zbl

[3] Denisov O. V., “Spektralnyi veroyatnostno-statisticheskii analiz markovskikh shifrov”, Prikladnaya diskretnaya matematika, 2020, no. 53, 12–31

[4] Patarin J., “Security of random Feistel schemes with 5 or more rounds”, LNCS, 3152, 2004, 106–122 | MR | Zbl

[5] Denisov O. V., Raznostno-spektralnye ataki na skhemy Lubi — Rakoff po nezavisimym dvublochnym tekstam, Predstavlena v redaktsiyu zhurnala «Matem. vopr. kriptogr.»

[6] Lee J.-K., Koo B., Roh D., et al., “Format-preserving encryption algorithms using families of tweakable blockciphers”, LNCS, 8949, 2015, 132–159 | MR | Zbl