Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 29-31
Voir la notice de l'article provenant de la source Math-Net.Ru
The following construction of a vector Boolean function is considered: $F(x)=\big(f(x),f(\pi(x)),f(\pi^2(x)),\ldots, f(\pi^{n-1}(x))\big)$, where $\pi\in\mathbb{S}_n$, $f$ is a $n$-dimensional Boolean function. Some necessary conditions for $F$ to be a bijection are proved, namely: $f$ must be balanced, $f(0^n)\neq f(1^n)$, $\pi$ must be full cycle substitution, $f\neq\mathrm{const}$ on any cycle of substitution $\pi'$, where $\pi'(a_1\ldots a_n)=(a_{\pi(1)}\ldots a_{\pi(n)})$ for all $a_1\ldots a_n\in\mathbb{F}_2^n$.
Mots-clés :
bijection
Keywords: vector Boolean function.
Keywords: vector Boolean function.
@article{PDMA_2023_16_a7,
author = {I. A. Pankratova and A. A. Medvedev},
title = {Construction of a substitution on~$\mathbb{F}_2^n$ based on a single {Boolean} function},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {29--31},
publisher = {mathdoc},
number = {16},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/}
}
TY - JOUR
AU - I. A. Pankratova
AU - A. A. Medvedev
TI - Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function
JO - Prikladnaya Diskretnaya Matematika. Supplement
PY - 2023
SP - 29
EP - 31
IS - 16
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/
LA - ru
ID - PDMA_2023_16_a7
ER -
%0 Journal Article
%A I. A. Pankratova
%A A. A. Medvedev
%T Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 29-31
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/
%G ru
%F PDMA_2023_16_a7
I. A. Pankratova; A. A. Medvedev. Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 29-31. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/