Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 29-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following construction of a vector Boolean function is considered: $F(x)=\big(f(x),f(\pi(x)),f(\pi^2(x)),\ldots, f(\pi^{n-1}(x))\big)$, where $\pi\in\mathbb{S}_n$, $f$ is a $n$-dimensional Boolean function. Some necessary conditions for $F$ to be a bijection are proved, namely: $f$ must be balanced, $f(0^n)\neq f(1^n)$, $\pi$ must be full cycle substitution, $f\neq\mathrm{const}$ on any cycle of substitution $\pi'$, where $\pi'(a_1\ldots a_n)=(a_{\pi(1)}\ldots a_{\pi(n)})$ for all $a_1\ldots a_n\in\mathbb{F}_2^n$.
Mots-clés : bijection
Keywords: vector Boolean function.
@article{PDMA_2023_16_a7,
     author = {I. A. Pankratova and A. A. Medvedev},
     title = {Construction of a substitution on~$\mathbb{F}_2^n$ based on a single {Boolean} function},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {29--31},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/}
}
TY  - JOUR
AU  - I. A. Pankratova
AU  - A. A. Medvedev
TI  - Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 29
EP  - 31
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/
LA  - ru
ID  - PDMA_2023_16_a7
ER  - 
%0 Journal Article
%A I. A. Pankratova
%A A. A. Medvedev
%T Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 29-31
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/
%G ru
%F PDMA_2023_16_a7
I. A. Pankratova; A. A. Medvedev. Construction of a substitution on~$\mathbb{F}_2^n$ based on a single Boolean function. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 29-31. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a7/

[1] Agibalov G. P., “Substitution block ciphers with functional keys”, Prikladnaya diskretnaya matematika, 2017, no. 38, 57–65 | MR

[2] Agibalov G. P. and Pankratova I. A., “Asymmetric cryptosystems on Boolean functions”, Prikladnaya diskretnaya matematika, 2018, no. 40, 23–33 | MR | Zbl

[3] Zyubina D. A., Tokareva N. N., “S-bloki s maksimalnoi komponentnoi algebraicheskoi immunnostyu ot malogo chisla peremennykh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2021, no. 14, 40–42

[4] Carlet C., Vectorial Boolean Functions for Cryptography, Cambridge University Press, Cambridge, 2010, 93 pp. | MR | Zbl