Periodic properties of a finite automaton generator
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 141-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The periodic properties of a two-stage finite automaton generator $G=A_1\cdot A_2$ are studied, where $A_1=(\mathbb{F}_2^n,\mathbb{F}_2, g_1, f_1)$ (it is autonomous), $g_1:\mathbb{F}_2^n\rightarrow\mathbb{F}_2^n$, $f_1:\mathbb{F}_2^n\rightarrow\mathbb{F}_2$, $A_2 = (\mathbb{F}_2,\mathbb{F}_2^m,\mathbb{F}_2,g_2,f_2)$, $g_2:\mathbb{F}_2\times\mathbb{F}_2^m\rightarrow\mathbb{F}_2^m$, $f_2:\mathbb{F}_2\times\mathbb{F}_2^m\rightarrow\mathbb{F}_2$, $n,m\geq 1$. It is obtained that the maximum value of the generator period is $2^{n+m}$. Some necessary conditions for its achievement are formulated, namely: 1) the function $g_1$ is a full cycle substitution; 2) changing the initial state $x(1)$ or $y(1)$ does not affect the period of the generator; 3) function $f_1$ is not a constant; 4) at least one of the subfunctions $f_2(0,\cdot)$ and $f_2(1,\cdot)$ is not a constant; 5) the subfunctions $g_2(0,\cdot)$ and $g_2(1,\cdot)$ of the transition function $g_2$ are substitutions; 6) $y(2^ni+j)\neq y(2^nk+j)$ for all $i,k\in\{0,\ldots,2^m-1\}$, $i\neq k$, $j=1,\ldots,2^n$.
Keywords: finite automaton generator, periodic sequences.
Mots-clés : substitutions
@article{PDMA_2023_16_a36,
     author = {P. K. Obukhov and I. A. Pankratova},
     title = {Periodic properties of a finite automaton generator},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {141--143},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a36/}
}
TY  - JOUR
AU  - P. K. Obukhov
AU  - I. A. Pankratova
TI  - Periodic properties of a finite automaton generator
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 141
EP  - 143
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a36/
LA  - ru
ID  - PDMA_2023_16_a36
ER  - 
%0 Journal Article
%A P. K. Obukhov
%A I. A. Pankratova
%T Periodic properties of a finite automaton generator
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 141-143
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a36/
%G ru
%F PDMA_2023_16_a36
P. K. Obukhov; I. A. Pankratova. Periodic properties of a finite automaton generator. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 141-143. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a36/

[1] Borovkova I. V., Pankratova I. A., Semenova E. V., “Kriptoanaliz dvukhkaskadnogo konechno-avtomatnogo generatora s funktsionalnym klyuchom”, Prikladnaya diskretnaya matematika, 2018, no. 42, 48–56 | MR | Zbl

[2] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii., Gelios ARV, M., 2002, 480 pp.