Properties of classes of Boolean functions constructed from several linear recurrences over the ring of integers modulo $2^n$
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 12-14

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of Boolean functions constructed from high-coordinate sequences of linear recurrences over the ring $\mathbb{Z}_{2^n}$ is defined. Various coordinate sets are used to isolate the coordinate sequences. It is shown that this class consists of functions that are significantly removed from the class of all affine functions.
Keywords: linear recurrent sequences, coordinate sequences, Boolean functions, non-linearity of Boolean functions.
@article{PDMA_2023_16_a2,
     author = {A. D. Bugrov},
     title = {Properties of classes of {Boolean} functions constructed from several linear recurrences over the ring of integers modulo $2^n$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {12--14},
     publisher = {mathdoc},
     number = {16},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a2/}
}
TY  - JOUR
AU  - A. D. Bugrov
TI  - Properties of classes of Boolean functions constructed from several linear recurrences over the ring of integers modulo $2^n$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2023
SP  - 12
EP  - 14
IS  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a2/
LA  - ru
ID  - PDMA_2023_16_a2
ER  - 
%0 Journal Article
%A A. D. Bugrov
%T Properties of classes of Boolean functions constructed from several linear recurrences over the ring of integers modulo $2^n$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2023
%P 12-14
%N 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a2/
%G ru
%F PDMA_2023_16_a2
A. D. Bugrov. Properties of classes of Boolean functions constructed from several linear recurrences over the ring of integers modulo $2^n$. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 12-14. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a2/