Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension
Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 5-8
Voir la notice de l'article provenant de la source Math-Net.Ru
We give lower and upper bounds on the number of ordered $N_m^k\left(q\right)$ and unordered $\widetilde{N}_m^k\left(q\right)$ partitions of the space $\mathbb{F}_q^m$ into affine subspaces of the same dimension $k$. In particular, the asymptotics of the logarithm of the number of unordered partitions of the space $\mathbb{F}_3^m$ into one-dimensional affine subspaces is established: $$\dfrac{m}{3}\cdot 3^{m}+c_{1}\cdot 3^{m}+o\left(3^{m}\right)\leq \log_{3}\widetilde{N}^{1}_{m}\left(3\right)\leq \dfrac{m}{3}\cdot 3^{m}+c_{2}\cdot 3^{m}+o\left(3^{m}\right).$$ Also, we highlight the bounds \begin{gather*} \log_q{N_{m}^{k}\left(q\right)}\gtrsim (m-k)q^{m-k}, m-k\rightarrow\infty,\\ \log_3{N_{m}^{k}\left(3\right)}\gtrsim 2\left(m-k\right) 3^{m-k},\\ \log_q N_{m}^{k}\left(q\right)\gtrsim \left(m-\frac{q-1}{q} k\right)q^{m-k}, k\rightarrow\infty, m-k\rightarrow\infty\\ \log_q{N_{m}^{k}\left(q\right)}\leq (k+1)(m-k-\log_q e)q^{m-k}+O(q^{m-k})+O(k(m-k)). \end{gather*}
Keywords:
affine subspaces, bounds, bent functions.
Mots-clés : partitions of a space
Mots-clés : partitions of a space
@article{PDMA_2023_16_a0,
author = {I. P. Baksova and Yu. V. Tarannikov},
title = {Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {5--8},
publisher = {mathdoc},
number = {16},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2023_16_a0/}
}
TY - JOUR AU - I. P. Baksova AU - Yu. V. Tarannikov TI - Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2023 SP - 5 EP - 8 IS - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2023_16_a0/ LA - ru ID - PDMA_2023_16_a0 ER -
%0 Journal Article %A I. P. Baksova %A Yu. V. Tarannikov %T Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension %J Prikladnaya Diskretnaya Matematika. Supplement %D 2023 %P 5-8 %N 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2023_16_a0/ %G ru %F PDMA_2023_16_a0
I. P. Baksova; Yu. V. Tarannikov. Bounds on the number of partitions of the vector space over a finite field into affine subspaces of the same dimension. Prikladnaya Diskretnaya Matematika. Supplement, no. 16 (2023), pp. 5-8. http://geodesic.mathdoc.fr/item/PDMA_2023_16_a0/