The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 112-116
Cet article a éte moissonné depuis la source Math-Net.Ru
A $k$-edge extension of a graph $G$ with $n$ vertices is minimal if it has $n$ vertices and contains the minimum number of edges or arcs among all $k$-edge extensions of $G$ with $n$ vertices. Minimal edge $1$-extensions of cycles are well studied. In this paper, we consider minimal edge $1$-extensions of cycle orientations. We study the upper and lower bounds for the number of additional arcs $\text{ec}(C_n)$ of a minimal edge $1$-extension of the oriented cycle $C_n$. The main result is an estimate for the number of additional arcs: $\left\lceil {n}/{2} \right\rceil \leq \text{ec}(C_n) \leq n$. Examples of cycle orientations on which the upper and lower bounds are achieved are given.
Keywords:
minimal edge extension, fault-tolerance.
Mots-clés : cycle orientation
Mots-clés : cycle orientation
@article{PDMA_2022_15_a26,
author = {O. V. Modenova and M. B. Abrosimov},
title = {The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {112--116},
year = {2022},
number = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/}
}
TY - JOUR AU - O. V. Modenova AU - M. B. Abrosimov TI - The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2022 SP - 112 EP - 116 IS - 15 UR - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/ LA - ru ID - PDMA_2022_15_a26 ER -
%0 Journal Article %A O. V. Modenova %A M. B. Abrosimov %T The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle %J Prikladnaya Diskretnaya Matematika. Supplement %D 2022 %P 112-116 %N 15 %U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/ %G ru %F PDMA_2022_15_a26
O. V. Modenova; M. B. Abrosimov. The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 112-116. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[2] Harary F. and Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[3] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[4] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | MR | Zbl