The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle
Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 112-116
Voir la notice de l'article provenant de la source Math-Net.Ru
A $k$-edge extension of a graph $G$ with $n$ vertices is minimal if it has $n$ vertices and contains the minimum number of edges or arcs among all $k$-edge extensions of $G$ with $n$ vertices. Minimal edge $1$-extensions of cycles are well studied. In this paper, we consider minimal edge $1$-extensions of cycle orientations. We study the upper and lower bounds for the number of additional arcs $\text{ec}(C_n)$ of a minimal edge $1$-extension of the oriented cycle $C_n$. The main result is an estimate for the number of additional arcs: $\left\lceil {n}/{2} \right\rceil \leq \text{ec}(C_n) \leq n$. Examples of cycle orientations on which the upper and lower bounds are achieved are given.
Keywords:
minimal edge extension, fault-tolerance.
Mots-clés : cycle orientation
Mots-clés : cycle orientation
@article{PDMA_2022_15_a26,
author = {O. V. Modenova and M. B. Abrosimov},
title = {The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {112--116},
publisher = {mathdoc},
number = {15},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/}
}
TY - JOUR AU - O. V. Modenova AU - M. B. Abrosimov TI - The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2022 SP - 112 EP - 116 IS - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/ LA - ru ID - PDMA_2022_15_a26 ER -
%0 Journal Article %A O. V. Modenova %A M. B. Abrosimov %T The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle %J Prikladnaya Diskretnaya Matematika. Supplement %D 2022 %P 112-116 %N 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/ %G ru %F PDMA_2022_15_a26
O. V. Modenova; M. B. Abrosimov. The upper and lower bounds for the number of additional arcs in a minimal edge $1$-extension of oriented cycle. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 112-116. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a26/