Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2022_15_a1, author = {V. G. Mikhailov and V. I. Kruglov}, title = {Asymptotic normality of number of multiple coincidences of chains in complete $q$-ary trees and forests with randomly marked vertices}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {8--11}, publisher = {mathdoc}, number = {15}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2022_15_a1/} }
TY - JOUR AU - V. G. Mikhailov AU - V. I. Kruglov TI - Asymptotic normality of number of multiple coincidences of chains in complete $q$-ary trees and forests with randomly marked vertices JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2022 SP - 8 EP - 11 IS - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2022_15_a1/ LA - ru ID - PDMA_2022_15_a1 ER -
%0 Journal Article %A V. G. Mikhailov %A V. I. Kruglov %T Asymptotic normality of number of multiple coincidences of chains in complete $q$-ary trees and forests with randomly marked vertices %J Prikladnaya Diskretnaya Matematika. Supplement %D 2022 %P 8-11 %N 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2022_15_a1/ %G ru %F PDMA_2022_15_a1
V. G. Mikhailov; V. I. Kruglov. Asymptotic normality of number of multiple coincidences of chains in complete $q$-ary trees and forests with randomly marked vertices. Prikladnaya Diskretnaya Matematika. Supplement, no. 15 (2022), pp. 8-11. http://geodesic.mathdoc.fr/item/PDMA_2022_15_a1/