On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 51-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies new ways of constructing differentially $2\delta$-uniform bijections over $\mathbb{F}_{2^{2m}}$, $m \ge 3$, that are based on $TU$-construction. Some well known results on the constructing differentially $4$-uniform permutations over $\mathbb{F}_{2^{2m}}$ are generalized in this work. The core idea is to use $TU$-construction and differentially $\delta$-uniform bijections to construct $2^t \cdot \delta$-uniform permutations. A generalized method for constructing $2m$-bit differentially $4$-uniform permutations is proposed, and new constructions of differentialy $6$ and $8$-uniform permutations are introduced.
Keywords: $S$-Box, differential uniformity
Mots-clés : permutation, $TU$-construction.
@article{PDMA_2021_14_a9,
     author = {D. B. Fomin},
     title = {On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {51--55},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a9/}
}
TY  - JOUR
AU  - D. B. Fomin
TI  - On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 51
EP  - 55
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a9/
LA  - ru
ID  - PDMA_2021_14_a9
ER  - 
%0 Journal Article
%A D. B. Fomin
%T On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 51-55
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a9/
%G ru
%F PDMA_2021_14_a9
D. B. Fomin. On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 51-55. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a9/

[1] Canteaut A., Perrin L., On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting, Cryptology Archive: Report 2018/713 | MR

[2] Biryukov A., Perrin L., Udovenko A., “Reverse-engineering the S-box of Streebog, Kuznyechik and Stribobr1”, LNCS, 9665, 2016, 372–402 | MR | Zbl

[3] Biryukov A., Perrin L., Udovenko A., Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem (Full Version), Cryptology Archive: Report 2016/539 | MR

[4] De la Cruz Jiménez R. A., Generation of 8-bit S-Boxes Having Almost Optimal Cryptographic Properties Using Smaller 4-bit S-Boxes and Finite Field Multiplication, , 2017 www.cs.haifa.ac.il/õrrd/LC17/paper60.pdf | MR

[5] Fomin D. B., “New classes of $8$-bit permutations based on a butterfly structure”, Matem. vopr. kriptogr., 10:2 (2019), 169–180 | MR

[6] Fomin D. B., “Postroenie podstanovok prostranstva $V_{2m}$ s ispolzovaniem $(2m,m)$-funktsii”, Matem. vopr. kriptogr., 11:3 (2020), 121–138 | MR

[7] Fomin D. B., “Ob algebraicheskoi stepeni i differentsialnoi ravnomernosti podstanovok prostranstva $V_{2m}$, postroennykh s ispolzovaniem $(2m,m)$-funktsii”, Matem. vopr. kriptogr., 11:4 (2020), 133–149 | MR

[8] Carlet C., Tang D., Tang X., Liao Q., “New construction of differentially 4-uniform bijections”, LNCS, 8567, 2013, 22–38 | MR