On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 51-55
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies new ways of constructing differentially $2\delta$-uniform bijections over $\mathbb{F}_{2^{2m}}$, $m \ge 3$, that are based on $TU$-construction. Some well known results on the constructing differentially $4$-uniform permutations over $\mathbb{F}_{2^{2m}}$ are generalized in this work. The core idea is to use $TU$-construction and differentially $\delta$-uniform bijections to construct $2^t \cdot \delta$-uniform permutations. A generalized method for constructing $2m$-bit differentially $4$-uniform permutations is proposed, and new constructions of differentialy $6$ and $8$-uniform permutations are introduced.
Keywords:
$S$-Box, differential uniformity
Mots-clés : permutation, $TU$-construction.
Mots-clés : permutation, $TU$-construction.
@article{PDMA_2021_14_a9,
author = {D. B. Fomin},
title = {On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {51--55},
publisher = {mathdoc},
number = {14},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a9/}
}
TY - JOUR
AU - D. B. Fomin
TI - On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$
JO - Prikladnaya Diskretnaya Matematika. Supplement
PY - 2021
SP - 51
EP - 55
IS - 14
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a9/
LA - ru
ID - PDMA_2021_14_a9
ER -
D. B. Fomin. On the way of constructing differentially $2\delta$-uniform permutations over $\mathbb{F}_{2^{2m}}$. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 51-55. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a9/