$\mathrm{S}$-blocks with maximum component algebraic immunity on a small number of variables
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 40-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a permutation on $ n $ elements, $f$ be a Boolean function in $n$ variables. Define a vector Boolean function $F_\pi:\mathbb{F}_2^n\rightarrow\mathbb{F}_2^n$ as $F_\pi(x) = (f(x), f(\pi(x)), \cdots, f (\pi^{n-1}(x))))$. In this paper, we study the component algebraic immunity of the vector Boolean function $F_\pi$ as a function of the Boolean function $f$ and the permutation $\pi$ for $n = 3, 4, 5$. We obtain complete sets of Boolean and, partly, vector Boolean functions with maximum algebraic immunity in $3, 4$ and $5$ variables. If the function $F_\pi$ has maximum algebraic immunity, then the permutation $\pi$ is full cycle.
Keywords: Boolean function, vector Boolean function, algebraic immunity, component algebraic immunity.
@article{PDMA_2021_14_a5,
     author = {D. A. Zyubina and N. N. Tokareva},
     title = {$\mathrm{S}$-blocks with maximum component algebraic immunity on a small number of variables},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {40--42},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a5/}
}
TY  - JOUR
AU  - D. A. Zyubina
AU  - N. N. Tokareva
TI  - $\mathrm{S}$-blocks with maximum component algebraic immunity on a small number of variables
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 40
EP  - 42
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a5/
LA  - ru
ID  - PDMA_2021_14_a5
ER  - 
%0 Journal Article
%A D. A. Zyubina
%A N. N. Tokareva
%T $\mathrm{S}$-blocks with maximum component algebraic immunity on a small number of variables
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 40-42
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a5/
%G ru
%F PDMA_2021_14_a5
D. A. Zyubina; N. N. Tokareva. $\mathrm{S}$-blocks with maximum component algebraic immunity on a small number of variables. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 40-42. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a5/

[1] Courtois N., Meier W., “Algebraic attack on stream ciphers with linear feedback”, LNCS, 2656, 2003, 345–359 | MR | Zbl

[2] Tokareva N., Gorodilova A., Agievich S., et al., “Mathematical methods in solutions of the problems presented at the Third International Students' Olympiad in Cryptography”, Prikladnaya diskretnaya matematika, 2018, no. 40, 34–58 | MR | Zbl

[3] Meier W., Pasalic E., Carlet C., “Algebraic attacks and decomposition of Boolean functions”, LNCS, 3027, 2004, 474–491 | MR | Zbl