On attractors in one discrete binary dynamic system with bipartite dependency graph
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 163-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

One discrete binary dynamic system $(S_n,f)$, $n>1$, with bipartite dependency graph is considered. The states of such a system are all possible binary vectors of length $n$, and evolutionary function is $f=(x_n,0,\dots,0,x_1)$. In this case, $f$ is associated with a bipartite directed dependency graph with vertices set $\{a_1,\ldots,a_n,\epsilon\}$ and with arcs from $a_1$ to $a_n$, from $a_n$ to $a_1$ and from $a_i$ to $\epsilon$, $1$. The map of the $(S_3,f)$ system with the evolutionary function $f=(x_3,0,x_1)$ and its bipartite dependency graph are presented. A theorem is given on the type and number of attractors in these systems. Namely, the system has two attractors of length $1$: $0^n$ and $10^{n-2}1$, and one attractor of length $2$ formed by states $00^{n-2}1$ and $10^{n-2}0$.
Keywords: attractor, basin, graph, dependency graph, discrete binary dynamic system, evolutionary function.
Mots-clés : bipartite graph
@article{PDMA_2021_14_a37,
     author = {R. I. Panteleev and A. V. Zharkova},
     title = {On attractors in one discrete binary dynamic system with bipartite dependency graph},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {163--165},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a37/}
}
TY  - JOUR
AU  - R. I. Panteleev
AU  - A. V. Zharkova
TI  - On attractors in one discrete binary dynamic system with bipartite dependency graph
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 163
EP  - 165
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a37/
LA  - ru
ID  - PDMA_2021_14_a37
ER  - 
%0 Journal Article
%A R. I. Panteleev
%A A. V. Zharkova
%T On attractors in one discrete binary dynamic system with bipartite dependency graph
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 163-165
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a37/
%G ru
%F PDMA_2021_14_a37
R. I. Panteleev; A. V. Zharkova. On attractors in one discrete binary dynamic system with bipartite dependency graph. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 163-165. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a37/

[1] Zharkova A. V., “Indeksy sostoyanii v dinamicheskoi sisteme dvoichnykh vektorov, assotsiirovannykh s orientatsiyami palm”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 475–484 | MR | Zbl

[2] Zharkova A. V., “O kolichestve attraktorov v konechnykh dinamicheskikh sistemakh orientatsii polnykh grafov”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 106–109

[3] Colon-Reyes O., Laubenbacher R., Pareigis B., “Boolean monomial dynamical systems”, Ann. Combinatorics, 8 (2004), 425–439 | DOI | MR | Zbl