Regular vertex $1$-extension for $2$-dimension meshes
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 161-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a schema of vertex $1$-extension for $2$-dimensional mesh is proposed. The extension is $4$-regular graph. The schema can be applied to meshes $n \times m$, $n \geq 2$ and $m \geq 2$. The extension is minimal for some meshes. Some extensions made by schema are not minimal. An example of such mesh is given.
Keywords: graph, mesh, fault tolerance, vertex extension.
@article{PDMA_2021_14_a36,
     author = {A. A. Lobov and M. B. Abrosimov},
     title = {Regular vertex $1$-extension for $2$-dimension meshes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {161--163},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a36/}
}
TY  - JOUR
AU  - A. A. Lobov
AU  - M. B. Abrosimov
TI  - Regular vertex $1$-extension for $2$-dimension meshes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 161
EP  - 163
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a36/
LA  - ru
ID  - PDMA_2021_14_a36
ER  - 
%0 Journal Article
%A A. A. Lobov
%A M. B. Abrosimov
%T Regular vertex $1$-extension for $2$-dimension meshes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 161-163
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a36/
%G ru
%F PDMA_2021_14_a36
A. A. Lobov; M. B. Abrosimov. Regular vertex $1$-extension for $2$-dimension meshes. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 161-163. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a36/

[1] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012

[2] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., 1976, no. 9, 875–884 | DOI | MR | Zbl

[3] Harary F., Hayes J. P., “Node fault tolerance in graphs”, Networks, 27 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[4] Abrosimov M.B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | MR | Zbl

[5] Karavai M. F., “Minimizirovannoe vlozhenie proizvolnykh gamiltonovykh grafov v otkazoustoichivyi graf i rekonfiguratsiya pri otkazakh. I”, Avtomatika i telemekhanika, 2004, no. 12, 159–178 | MR

[6] Karavai M. F., “Minimizirovannoe vlozhenie proizvolnykh gamiltonovykh grafov v otkazoustoichivyi graf i rekonfiguratsiya pri otkazakh. II. Reshetki i $k$-otkazoustoichivost”, Avtomatika i telemekhanika, 2005, no. 2, 175–189 | MR | Zbl

[7] Kamil I. A. K., “Vychislitelnyi eksperiment po postroeniyu otkazoustoichivykh realizatsii grafov s chislom vershin do 9”, Intern. J. Open Inform. Technol., 8:9 (2020), 43–47