Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a35, author = {Yu. V. Kosolapov and E. A. Lelyuk}, title = {On decomposability of {Schur~---} {Hadamard} product of the tensor products sum of {Reed~---} {Muller} codes}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {158--161}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a35/} }
TY - JOUR AU - Yu. V. Kosolapov AU - E. A. Lelyuk TI - On decomposability of Schur~--- Hadamard product of the tensor products sum of Reed~--- Muller codes JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 158 EP - 161 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a35/ LA - ru ID - PDMA_2021_14_a35 ER -
%0 Journal Article %A Yu. V. Kosolapov %A E. A. Lelyuk %T On decomposability of Schur~--- Hadamard product of the tensor products sum of Reed~--- Muller codes %J Prikladnaya Diskretnaya Matematika. Supplement %D 2021 %P 158-161 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a35/ %G ru %F PDMA_2021_14_a35
Yu. V. Kosolapov; E. A. Lelyuk. On decomposability of Schur~--- Hadamard product of the tensor products sum of Reed~--- Muller codes. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 158-161. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a35/
[1] Sendrier N., Tillich J.-P., Code-Based Cryptography: New Security Solutions Against a Quantum Adversary., ERCIM News, ERCIM, 2016
[2] Supporting Documentation describing the round-3 submission, , 2020 https://classic.mceliece.org/nist/mceliece-20201010.pdf
[3] Sidelnikov V. M., Shestakov S. O., “O sisteme shifrovaniya, osnovannoi na obobschennykh kodakh Rida — Solomona”, Diskretnaya matematika, 3:3 (1992), 57–63 | Zbl
[4] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, LNCS, 4515, 2007, 347–360 | MR | Zbl
[5] Chizhov I. I., Borodin M. A., “Effektivnaya ataka na kriptosistemu Mak-Elisa, postroennuyu na osnove kodov Rida — Mallera”, Diskretnaya matematika, 26:1 (2014), 10–20 | MR | Zbl
[6] Deundyak V. M., Kosolapov Yu. V., Lelyuk E. A., “Dekodirovanie tenzornogo proizvedeniya MLD-kodov i prilozheniya k kodovym kriptosistemam”, Model. i analiz inform. sistem, 24:2 (2017), 137–152 | MR
[7] Deundyak V. M., Lelyuk E. A., “Teoretiko-grafovyi metod dekodirovaniya nekotorykh gruppovykh MLD-kodov”, Diskretn. analiz i issled. oper., 27:2 (2020), 17–42 | MR
[8] Randriambololona H., On products and powers of linear codes under componentwise multiplication, arXiv: 1312.0022 | MR
[9] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[10] Deundyak V. M., Kosolapov Yu. V., “Analiz stoikosti nekotorykh kodovykh kriptosistem, osnovannyi na razlozhenii kodov v pryamuyu summu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:3 (2019), 89–101 | MR | Zbl
[11] Deundyak V. M., Kosolapov Yu. V., “O nekotorykh svoistvakh proizvedeniya Shura — Adamara dlya lineinykh kodov i ikh prilozheniyakh”, Prikladnaya diskretnaya matematika, 2020, no. 50, 72–86 | Zbl