Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 30-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a complete graph with vertices $1,2, \ldots, n$, the vertices $2,3, \ldots, n$ are provided with independent random labels taking values in the finite set ${\mathcal A}_N$. Consider the set of all chains of $s$ adjacent edges, each of which leaves vertex $1$ and does not pass through the same vertex twice. Each chain corresponds to an $s$-tuple of random labels of the passed vertices. In this paper, we consider the $U$-statistics $U_k (s)$ with a kernel depending on the $k$ of such $s$-tuples. The number $k \ge 2$ is considered to be fixed, but $s \ge 1 $ can change. It has been proved that a sufficient condition for the asymptotic normality of $U_k (s)$ (under ordinary standardization) is a condition of the form $\mathbf{D} U_k(s) \ge C n^{2 (ks-1) + \varkappa},$ where $ C, \varkappa> 0.$
Keywords: $U$-statistic, central limit theorem, complete graph, random labels.
Mots-clés : tuple
@article{PDMA_2021_14_a2,
     author = {N. M. Mezhennaya and V. G. Mikhailov},
     title = {Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {30--32},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
AU  - V. G. Mikhailov
TI  - Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 30
EP  - 32
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/
LA  - ru
ID  - PDMA_2021_14_a2
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%A V. G. Mikhailov
%T Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 30-32
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/
%G ru
%F PDMA_2021_14_a2
N. M. Mezhennaya; V. G. Mikhailov. Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 30-32. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/

[1] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl

[2] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Nauk. dumka, Kiev, 1989 | MR

[3] Mikhailov V. G., “Tsentralnaya predelnaya teorema dlya chisla nepolnykh dannykh povtorenii”, Teoriya veroyatn. i ee primen., 20:4 (1975), 880–884 | MR | Zbl

[4] Shoitov A. M., “Normalnoe priblizhenie v zadache ob ekvivalentnykh tsepochkakh”, Tr. po diskr. matem., 10 (2007), 326–349

[5] Mikhailov V. G., Mezhennaya N. M., “Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence”, Sib. Elektron. Mat. Izv., 17 (2020), 672–682 | DOI | MR | Zbl

[6] Doukhan P., Mixing: Properties and Examples, Lecture Notes in Statistics, 85, Springer Verlag, N.Y., 1994 | DOI | MR | Zbl

[7] Rukhin A., Soto J., Nechvatal J., et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22r1a, Natl. Inst. Stand. Technol. Spec. Publ., 2010

[8] Janson S., “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 293–325 | DOI | MR