Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2021_14_a2, author = {N. M. Mezhennaya and V. G. Mikhailov}, title = {Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {30--32}, publisher = {mathdoc}, number = {14}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/} }
TY - JOUR AU - N. M. Mezhennaya AU - V. G. Mikhailov TI - Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 30 EP - 32 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/ LA - ru ID - PDMA_2021_14_a2 ER -
%0 Journal Article %A N. M. Mezhennaya %A V. G. Mikhailov %T Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph %J Prikladnaya Diskretnaya Matematika. Supplement %D 2021 %P 30-32 %N 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/ %G ru %F PDMA_2021_14_a2
N. M. Mezhennaya; V. G. Mikhailov. Central limit theorem for $U$-statistics of tuples of vertex labels on a complete graph. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 30-32. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a2/
[1] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl
[2] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Nauk. dumka, Kiev, 1989 | MR
[3] Mikhailov V. G., “Tsentralnaya predelnaya teorema dlya chisla nepolnykh dannykh povtorenii”, Teoriya veroyatn. i ee primen., 20:4 (1975), 880–884 | MR | Zbl
[4] Shoitov A. M., “Normalnoe priblizhenie v zadache ob ekvivalentnykh tsepochkakh”, Tr. po diskr. matem., 10 (2007), 326–349
[5] Mikhailov V. G., Mezhennaya N. M., “Normal approximation for $U$- and $V$-statistics of a stationary absolutely regular sequence”, Sib. Elektron. Mat. Izv., 17 (2020), 672–682 | DOI | MR | Zbl
[6] Doukhan P., Mixing: Properties and Examples, Lecture Notes in Statistics, 85, Springer Verlag, N.Y., 1994 | DOI | MR | Zbl
[7] Rukhin A., Soto J., Nechvatal J., et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication 800-22r1a, Natl. Inst. Stand. Technol. Spec. Publ., 2010
[8] Janson S., “Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs”, Ann. Probab., 16:1 (1988), 293–325 | DOI | MR