Threshold Diffie~--- Hellman Protocol
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 79-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a threshold elliptic curve Diffie — Hellman (ECDH) scheme which allows to generate and store private keys in a distributed way so that the private key doesn't have to be recomputed in order to perform a cryptographic operation. The main idea is to use a dealerless DKG scheme based on Feldman's VSS to generate shares of a private key without ever having the private key computed. To complete a cryptographic operation, a shareholder performs some computations on the share and sends the resulting piece to the other participating shareholders. Combined together, those values give the expected result of the cryptographic operation without ever giving a clue on the share values themselves.
Keywords: threshold cryptography, threshold Diffie — Hellman
Mots-clés : ECDH.
@article{PDMA_2021_14_a17,
     author = {D. N. Kolegov and Yu. R. Khalniyazova},
     title = {Threshold {Diffie~---} {Hellman} {Protocol}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {79--81},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a17/}
}
TY  - JOUR
AU  - D. N. Kolegov
AU  - Yu. R. Khalniyazova
TI  - Threshold Diffie~--- Hellman Protocol
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 79
EP  - 81
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a17/
LA  - ru
ID  - PDMA_2021_14_a17
ER  - 
%0 Journal Article
%A D. N. Kolegov
%A Yu. R. Khalniyazova
%T Threshold Diffie~--- Hellman Protocol
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 79-81
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a17/
%G ru
%F PDMA_2021_14_a17
D. N. Kolegov; Yu. R. Khalniyazova. Threshold Diffie~--- Hellman Protocol. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 79-81. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a17/

[1] Feldman P., A Practical Scheme for Non-interactive Verifiable Secret Sharing, http://www.cs.umd.edu/g̃asarch/TOPICS/secretsharing/feldmanVSS.pdf

[2] Gennaro R., Goldfeder S., Fast Multiparty Threshold ECDSA with Fast Trustless Setup, https://eprint.iacr.org/2019/114

[3] Kolegov D., Khalniyazova Yu., Varlakov D., Towards Threshold Key Exchange Protocols, arXiv: 2101.00084