Cryptanalytic invertibility of two-argument functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 67-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tests of cryptanalytic invertibility of all possible types for functions $g: D_1\times D_2\to D$ are proposed. Let $G_a=\{g(a,x_2): x_2\in D_2\}$ for any $a\in D_1$. Then: 1) function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\forall$ iff $\forall a, b\in D_1$ ($a\ne b\Rightarrow G_a\cap G_b=\varnothing$); 2) function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\exists$ iff there exists a mapping $\varphi$ such that the mapping $a\mapsto g(a, \varphi(a))$ is injective; 3) function $g$ is invertible with respect to the variable $x_2$ of the type $\exists\forall$ iff $|G_a|=|D_2|$ for some value $a\in D_1$. Algorithms for constructing a recovering function and generating invertible functions are formulated; some estimates of the number of invertible functions are given.
Keywords: cryptanalytic invertibility, invertibility test, recovering function.
@article{PDMA_2021_14_a14,
     author = {N. Yu. Berdnikova and I. A. Pankratova},
     title = {Cryptanalytic invertibility of two-argument functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {67--71},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a14/}
}
TY  - JOUR
AU  - N. Yu. Berdnikova
AU  - I. A. Pankratova
TI  - Cryptanalytic invertibility of two-argument functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 67
EP  - 71
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a14/
LA  - ru
ID  - PDMA_2021_14_a14
ER  - 
%0 Journal Article
%A N. Yu. Berdnikova
%A I. A. Pankratova
%T Cryptanalytic invertibility of two-argument functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 67-71
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a14/
%G ru
%F PDMA_2021_14_a14
N. Yu. Berdnikova; I. A. Pankratova. Cryptanalytic invertibility of two-argument functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 67-71. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a14/

[1] Agibalov G.P., “Cryptanalytical finite automaton invertibility with finite delay”, Prikladnaya diskretnaya matematika, 2019, no. 46, 27–37 | MR | Zbl

[2] Agibalov G.P., “Problems in theory of cryptanalytical invertibility of finite automata”, Prikladnaya diskretnaya matematika, 2020, no. 50, 62–71 | MR | Zbl

[3] Agibalov G.P., “Cryptanalytic concept of finite automaton invertibility with finite delay”, Prikladnaya diskretnaya matematika, 2019, no. 44, 34–42 | MR | Zbl