Cryptanalytic invertibility of two-argument functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 67-71
Voir la notice de l'article provenant de la source Math-Net.Ru
Tests of cryptanalytic invertibility of all possible types for functions $g: D_1\times D_2\to D$ are proposed. Let $G_a=\{g(a,x_2): x_2\in D_2\}$ for any $a\in D_1$. Then: 1) function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\forall$
iff $\forall a, b\in D_1$ ($a\ne b\Rightarrow G_a\cap G_b=\varnothing$); 2) function $g$ is invertible with respect to the variable $x_1$ of the type $\forall\exists$ iff there exists a mapping $\varphi$ such that the mapping $a\mapsto g(a, \varphi(a))$ is injective; 3) function $g$ is invertible with respect to the variable $x_2$ of the type $\exists\forall$ iff $|G_a|=|D_2|$ for some value $a\in D_1$. Algorithms for constructing a recovering function and generating invertible functions are formulated; some estimates of the number of invertible
functions are given.
Keywords:
cryptanalytic invertibility, invertibility test, recovering function.
@article{PDMA_2021_14_a14,
author = {N. Yu. Berdnikova and I. A. Pankratova},
title = {Cryptanalytic invertibility of two-argument functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {67--71},
publisher = {mathdoc},
number = {14},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a14/}
}
TY - JOUR AU - N. Yu. Berdnikova AU - I. A. Pankratova TI - Cryptanalytic invertibility of two-argument functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 67 EP - 71 IS - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a14/ LA - ru ID - PDMA_2021_14_a14 ER -
N. Yu. Berdnikova; I. A. Pankratova. Cryptanalytic invertibility of two-argument functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 67-71. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a14/