A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 55-57
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f:V_n \rightarrow {\mathbb Z}_p$ be $p$-logic function, $n\ge 2$, and $V_n={\mathbb Z}_p^n$ is considered as a vector space over ${\mathbb Z}_p$. A disjunctive decomposition of $f$ into a product of $p$-logic functions under various linear transformations of arguments is considered. Function $f$ is linearly decomposable into disjunctive product if there exists a linear transformation $A$ of the vector space $V_n$ such that $$ f(xA)= f_1(x_1,\ldots , x_k) f_2(x_{k+1},\ldots , x_n) $$ for some $k$, $1\le k $, and functions $f_1$ and $f_2$. We say that argument $x_n$ of functions $f(x)$ is essential iff $f(x)\neq f(x + e_n)$ for $e_n=(0,\ldots, 0,1)$. The main result is: if all arguments of all functions $f(xA)$ under linear substitutuions $A$ of the vector space $V_n$ are essential, the set $\{a\in V_n: f(a)\neq 0\}$ is not contained in hyperplane of $V_n$, and $f$ is linearly decompsable into the disjunctive product $f_1\cdot \dots \cdot f_m$, where $m$ is maximal, then the direct sum of subspaces $V_n=V^{(1)}+\ldots +V^{(m)}$ is unique and invariant under the stabilizer group of the function $f$ in general linear group.
Keywords:
$p$-logic functions, disjunctive product, linear transformation.
@article{PDMA_2021_14_a10,
author = {A. V. Cheremushkin},
title = {A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {55--57},
year = {2021},
number = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a10/}
}
TY - JOUR AU - A. V. Cheremushkin TI - A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2021 SP - 55 EP - 57 IS - 14 UR - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a10/ LA - ru ID - PDMA_2021_14_a10 ER -
A. V. Cheremushkin. A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 55-57. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a10/
[1] Cheremushkin A. V., “Odnoznachnost razlozheniya dvoichnoi funktsii v bespovtornoe proizvedenie nelineinykh neprivodimykh somnozhitelei”, Vestnik Moskovskogo gosudarstvennogo universiteta lesa «Lesnoi vestnik», 2004, no. 4(35), 86–90