A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 55-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f:V_n \rightarrow {\mathbb Z}_p$ be $p$-logic function, $n\ge 2$, and $V_n={\mathbb Z}_p^n$ is considered as a vector space over ${\mathbb Z}_p$. A disjunctive decomposition of $f$ into a product of $p$-logic functions under various linear transformations of arguments is considered. Function $f$ is linearly decomposable into disjunctive product if there exists a linear transformation $A$ of the vector space $V_n$ such that $$ f(xA)= f_1(x_1,\ldots , x_k) f_2(x_{k+1},\ldots , x_n) $$ for some $k$, $1\le k $, and functions $f_1$ and $f_2$. We say that argument $x_n$ of functions $f(x)$ is essential iff $f(x)\neq f(x + e_n)$ for $e_n=(0,\ldots, 0,1)$. The main result is: if all arguments of all functions $f(xA)$ under linear substitutuions $A$ of the vector space $V_n$ are essential, the set $\{a\in V_n: f(a)\neq 0\}$ is not contained in hyperplane of $V_n$, and $f$ is linearly decompsable into the disjunctive product $f_1\cdot \dots \cdot f_m$, where $m$ is maximal, then the direct sum of subspaces $V_n=V^{(1)}+\ldots +V^{(m)}$ is unique and invariant under the stabilizer group of the function $f$ in general linear group.
Keywords: $p$-logic functions, disjunctive product, linear transformation.
@article{PDMA_2021_14_a10,
     author = {A. V. Cheremushkin},
     title = {A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {55--57},
     publisher = {mathdoc},
     number = {14},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2021_14_a10/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2021
SP  - 55
EP  - 57
IS  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2021_14_a10/
LA  - ru
ID  - PDMA_2021_14_a10
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2021
%P 55-57
%N 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2021_14_a10/
%G ru
%F PDMA_2021_14_a10
A. V. Cheremushkin. A conditions for uniqueness reresentation of $p$-logic function into disjunctive product of functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 14 (2021), pp. 55-57. http://geodesic.mathdoc.fr/item/PDMA_2021_14_a10/

[1] Cheremushkin A. V., “Odnoznachnost razlozheniya dvoichnoi funktsii v bespovtornoe proizvedenie nelineinykh neprivodimykh somnozhitelei”, Vestnik Moskovskogo gosudarstvennogo universiteta lesa «Lesnoi vestnik», 2004, no. 4(35), 86–90