On the optimality of graph implementations with prescribed connectivities
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 103-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

Connected graphs are of great interest in applications, i.e., in design of reliable systems. The vertex connectivity $k$ of a graph $G$ is the minimum number of vertices whose removal leads to a disconnected or trivial graph. Analogously, the edge connectivity $\lambda$ of a graph $G$ is the minimum number of edges whose removal leads to a disconnected or trivial graph. They are related with the minimum vertex degree $\delta$ by Whitney inequality: $k \leq \lambda \leq \delta$. G. Chartrand and F. Harary proved that this result is not improving in the sense that for any natural numbers $a, b, c$, such that $0 a \leq b \leq c$, we can construct a graph for which $k = a$, $\lambda = b$, $\delta = c$. In their proof, Chartrand and Harary proposed the graph with the number of vertices $2(c + 1)$ and the number of edges $c(c + 1) + b$, and the prescribed values of vertex connection, edge connection, and the minimum degree of vertices. In this paper, we consider the problem of constructing the corresponding implementation with the smallest possible number of vertices and edges. Main results: if $a \leq b c$, then the minimun number of vertices is $2(c + 1)$, if $a = b = c$, then it is $c + 1$, and if $a \leq b = c$, then the minimum number of vertices is $2(c+1) - a$.
Keywords: vertex connectivity, edge connectivity, Whitney's inequality.
@article{PDMA_2020_13_a29,
     author = {B. A. Terebin and M. B. Abrosimov},
     title = {On the optimality of graph implementations with prescribed connectivities},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {103--105},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a29/}
}
TY  - JOUR
AU  - B. A. Terebin
AU  - M. B. Abrosimov
TI  - On the optimality of graph implementations with prescribed connectivities
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 103
EP  - 105
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a29/
LA  - ru
ID  - PDMA_2020_13_a29
ER  - 
%0 Journal Article
%A B. A. Terebin
%A M. B. Abrosimov
%T On the optimality of graph implementations with prescribed connectivities
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 103-105
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a29/
%G ru
%F PDMA_2020_13_a29
B. A. Terebin; M. B. Abrosimov. On the optimality of graph implementations with prescribed connectivities. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 103-105. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a29/

[1] Kharari F., Teoriya grafov, Mir, M., 1973, 300 pp. | MR

[2] Whitney H., “Congruent graphs and the connectivity of graphs”, Am. J. Math., 54 (1932), 150–168 | DOI | MR

[3] Chartrand G., Harary F., “Graphs with prescribed connectivities”, 1966 Symp. on Graph Theory. Tihany, Acad. Sci. Hung., 1967, 61–63 | MR