Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 41-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a simple method of constructing S-boxes using Boolean functions and permutations. Let $\pi$ be an arbitrary permutation on $n$ elements, $f$ be a Boolean function in $n$ variables. Define a vectorial Boolean function $F_{\pi}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ as $F_{\pi}(x) = (f(x), f(\pi(x)), f(\pi^2(x)), \ldots, f(\pi^{n-1}(x)))$. We study cryptographic properties of $F_{\pi}$ such as high nonlinearity, balancedness, low differential $\delta$-uniformity in dependence on properties of $f$ and $\pi$ for small $n$.
Keywords: Boolean function, vectorial Boolean function, S-box, high nonlinearity, balancedness, low differential $\delta$-uniformity, high algebraic degree.
@article{PDMA_2020_13_a12,
     author = {D. A. Zyubina and N. N. Tokareva},
     title = {Cryptographic properties of a simple {S-box} construction based on a {Boolean} function and a permutation},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {41--43},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a12/}
}
TY  - JOUR
AU  - D. A. Zyubina
AU  - N. N. Tokareva
TI  - Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 41
EP  - 43
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a12/
LA  - en
ID  - PDMA_2020_13_a12
ER  - 
%0 Journal Article
%A D. A. Zyubina
%A N. N. Tokareva
%T Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 41-43
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a12/
%G en
%F PDMA_2020_13_a12
D. A. Zyubina; N. N. Tokareva. Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 41-43. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a12/

[1] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Acad. Press, Elsevier, USA, 2009 | MR | Zbl

[2] Carlet C., “Vectorial Boolean functions for cryptography”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, eds. Y. Crama, P. Hammer, Cambridge University Press, Cambridge, 2010, 398–470 | DOI | MR

[3] Tokareva N., Gorodilova A., Agievich S., et al., “Mathematical methods in solutions of the problems presented at the Third International Students' Olympiad in Cryptography”, Prikladnaya Diskretnaya Matematika, 2018, no. 40, 34–58 | DOI | MR

[4] Carlet C., “Boolean functions for cryptography and error-correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, eds. Y. Crama, P. Hammer, Cambridge University Press, Cambridge, 2010, 257–397 | DOI | MR | Zbl

[5] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Boolean Functions in Coding Theory and Cryptology, MCCME Publ., M., 2012, 584 pp. (in Russian) | MR