Refractive bijections in Steiner triples
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 6-8
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with refractive bijections in Steiner triples used in the construction of matroids and secret sharing schemes. Refractors are understood to mean mappings $F$ of a quasigroup into itself satisfying the condition $F (x * y) \neq F (x) * F (y)$ for any $x \neq y$. The necessary conditions for the existence of APN-bijections in $\mathrm{GF}(2^n)$ are found, for $N=7$ the superposition of any two refractive bijections is not refractive. It is found that for $N=9$, $13$ and $2^n-1$ elements for odd $n$ not divisible by three, there are three Steiner triples systems without common triples. Refractive bijections are proposed for systems of Steiner triples without common triples for $N=13$. A counterexample is obtained to the hypothesis that each homogeneous matroid defines a certain block scheme using sets of refractive bijections, for $N=7$ such $S, S', S''$ do not exist. Functions that are APN-bijections are given. The condition allowing to construct homogeneous matroids that are not reduced to block scheme used in secret sharing schemes using Steiner linear triples systems is revealed, and a refractive bijection that is not an APN-function is also found, for instance $F(x)=x^{-3}$.
Keywords:
refracting bijections, Steiner quasigroups, matroids.
@article{PDMA_2020_13_a0,
author = {M. V. Vedunova and K. L. Geut and A. O. Ignatova and S. S. Titov},
title = {Refractive bijections in {Steiner} triples},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {6--8},
publisher = {mathdoc},
number = {13},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a0/}
}
TY - JOUR AU - M. V. Vedunova AU - K. L. Geut AU - A. O. Ignatova AU - S. S. Titov TI - Refractive bijections in Steiner triples JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2020 SP - 6 EP - 8 IS - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a0/ LA - ru ID - PDMA_2020_13_a0 ER -
M. V. Vedunova; K. L. Geut; A. O. Ignatova; S. S. Titov. Refractive bijections in Steiner triples. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 6-8. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a0/