Refractive bijections in Steiner triples
Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 6-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with refractive bijections in Steiner triples used in the construction of matroids and secret sharing schemes. Refractors are understood to mean mappings $F$ of a quasigroup into itself satisfying the condition $F (x * y) \neq F (x) * F (y)$ for any $x \neq y$. The necessary conditions for the existence of APN-bijections in $\mathrm{GF}(2^n)$ are found, for $N=7$ the superposition of any two refractive bijections is not refractive. It is found that for $N=9$, $13$ and $2^n-1$ elements for odd $n$ not divisible by three, there are three Steiner triples systems without common triples. Refractive bijections are proposed for systems of Steiner triples without common triples for $N=13$. A counterexample is obtained to the hypothesis that each homogeneous matroid defines a certain block scheme using sets of refractive bijections, for $N=7$ such $S, S', S''$ do not exist. Functions that are APN-bijections are given. The condition allowing to construct homogeneous matroids that are not reduced to block scheme used in secret sharing schemes using Steiner linear triples systems is revealed, and a refractive bijection that is not an APN-function is also found, for instance $F(x)=x^{-3}$.
Keywords: refracting bijections, Steiner quasigroups, matroids.
@article{PDMA_2020_13_a0,
     author = {M. V. Vedunova and K. L. Geut and A. O. Ignatova and S. S. Titov},
     title = {Refractive bijections in {Steiner} triples},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {6--8},
     publisher = {mathdoc},
     number = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2020_13_a0/}
}
TY  - JOUR
AU  - M. V. Vedunova
AU  - K. L. Geut
AU  - A. O. Ignatova
AU  - S. S. Titov
TI  - Refractive bijections in Steiner triples
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2020
SP  - 6
EP  - 8
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2020_13_a0/
LA  - ru
ID  - PDMA_2020_13_a0
ER  - 
%0 Journal Article
%A M. V. Vedunova
%A K. L. Geut
%A A. O. Ignatova
%A S. S. Titov
%T Refractive bijections in Steiner triples
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2020
%P 6-8
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2020_13_a0/
%G ru
%F PDMA_2020_13_a0
M. V. Vedunova; K. L. Geut; A. O. Ignatova; S. S. Titov. Refractive bijections in Steiner triples. Prikladnaya Diskretnaya Matematika. Supplement, no. 13 (2020), pp. 6-8. http://geodesic.mathdoc.fr/item/PDMA_2020_13_a0/

[1] Medvedev N. V., Titov S. S., “Ob odnorodnykh matroidakh i blok-skhemakh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2017, no. 10, 21–23

[2] Idrisova V. A., “Vektornye 2-v-1 funktsii kak podfunktsii vzaimno odnoznachnykh APN-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 39–41

[3] Vitkup V. A., “O spetsialnom podklasse vektornykh bulevykh funktsii i probleme suschestvovaniya APN-perestanovok”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 19–21

[4] Frolova A. A., “Iterativnaya konstruktsiya APN-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 24–25

[5] Kholl M., Kombinatorika, per. s angl., Mir, M., 1970, 424 pp. | MR

[6] Vedunova M. V., Ignatova A. O., Geut K. L., “Blokirovka lineinykh mnogoobrazii i troiki Shteinera”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 93–95