Exact formula for exponent of mixing digraph of feedback shift register
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 29-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $g$ be a binary $n$-stage nonlinear shift register with feedback $f(x_0,\ldots,x_{n-1})$ and $\Gamma(g)$ denotes a mixing digraph of transformation $g$. By $d_m$ we denote the greatest number of essential variable of $f$. For primitive digraph $\Gamma(g)$, we obtain the exact formulas for exponent of $\Gamma(g)$ for $d_m\in\{n-1,n-2\}$ and of local exponents $\gamma_{u,v}$ for $0\leq u,v$.
Keywords: local primitivity of digraph, mixing digraph, primitive digraph, shift register, digraph exponent.
@article{PDMA_2019_12_a7,
     author = {V. M. Fomichev and Ya. E. Avezova},
     title = {Exact formula for exponent of mixing digraph of feedback shift register},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {29--31},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a7/}
}
TY  - JOUR
AU  - V. M. Fomichev
AU  - Ya. E. Avezova
TI  - Exact formula for exponent of mixing digraph of feedback shift register
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 29
EP  - 31
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a7/
LA  - ru
ID  - PDMA_2019_12_a7
ER  - 
%0 Journal Article
%A V. M. Fomichev
%A Ya. E. Avezova
%T Exact formula for exponent of mixing digraph of feedback shift register
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 29-31
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a7/
%G ru
%F PDMA_2019_12_a7
V. M. Fomichev; Ya. E. Avezova. Exact formula for exponent of mixing digraph of feedback shift register. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 29-31. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a7/

[1] Frobenius G., “Über Matrizen aus nicht negativen Elementen”, Sitzungsber K. Preuss. Akad. Wiss., 1912, 456–477 | Zbl

[2] Fomichev V. M., Avezova Ya. E., Koreneva A. M., Kyazhin S. N., “Primitivity and local primitivity of digraphs and nonnegative matrices”, J. Appl. Industr. Math., 12:3 (2018), 453–469 | DOI | MR | Zbl

[3] Fomichev V. M., Kyazhin S. N., “Local primitivity of matrices and graphs”, J. Appl. Industr. Math., 11:1 (2017), 26–39 | DOI | MR | Zbl