Exact formula for exponent of mixing digraph of feedback shift register
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 29-31
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $g$ be a binary $n$-stage nonlinear shift register with feedback $f(x_0,\ldots,x_{n-1})$ and $\Gamma(g)$ denotes a mixing digraph of transformation $g$. By $d_m$ we denote the greatest number of essential variable of $f$. For primitive digraph $\Gamma(g)$, we obtain the exact formulas for exponent of $\Gamma(g)$ for $d_m\in\{n-1,n-2\}$ and of local exponents $\gamma_{u,v}$ for $0\leq u,v$.
Keywords:
local primitivity of digraph, mixing digraph, primitive digraph, shift register, digraph exponent.
@article{PDMA_2019_12_a7,
author = {V. M. Fomichev and Ya. E. Avezova},
title = {Exact formula for exponent of mixing digraph of feedback shift register},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {29--31},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a7/}
}
TY - JOUR AU - V. M. Fomichev AU - Ya. E. Avezova TI - Exact formula for exponent of mixing digraph of feedback shift register JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 29 EP - 31 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a7/ LA - ru ID - PDMA_2019_12_a7 ER -
V. M. Fomichev; Ya. E. Avezova. Exact formula for exponent of mixing digraph of feedback shift register. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 29-31. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a7/
[1] Frobenius G., “Über Matrizen aus nicht negativen Elementen”, Sitzungsber K. Preuss. Akad. Wiss., 1912, 456–477 | Zbl
[2] Fomichev V. M., Avezova Ya. E., Koreneva A. M., Kyazhin S. N., “Primitivity and local primitivity of digraphs and nonnegative matrices”, J. Appl. Industr. Math., 12:3 (2018), 453–469 | DOI | MR | Zbl
[3] Fomichev V. M., Kyazhin S. N., “Local primitivity of matrices and graphs”, J. Appl. Industr. Math., 11:1 (2017), 26–39 | DOI | MR | Zbl