On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index~$2$
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 27-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that four nonabelian groups of order $2^m$, where $m \ge 4$, have cyclic subgroups of index $2$. Examples are well-known dihedral groups and generalized quaternion groups. Any nonabelian group $G$ of order $2^m$ with cyclic subgroups of index $2$ can be considered similar to the additive abelian group of the residue ring $\mathbb{Z}_{2^m}$, which is used as a key-addition group of ciphers. In this paper, we define two classes of transformations on $G$, which are called power piecewise affine. For each class we prove a bijection criterion. Using these criteria, we can fully classify orthomorphisms or their variations among described classes of power piecewise affine permutations.
Keywords: nonabelian group, dihedral group, generalized quaternion group, orthomorphism.
Mots-clés : bijection criterion
@article{PDMA_2019_12_a6,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index~$2$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {27--29},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index~$2$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 27
EP  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/
LA  - ru
ID  - PDMA_2019_12_a6
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index~$2$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 27-29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/
%G ru
%F PDMA_2019_12_a6
B. A. Pogorelov; M. A. Pudovkina. On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index~$2$. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 27-29. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/

[1] Pogorelov B. A., Pudovkina M. A., “O neabelevykh gruppakh nalozheniya klyucha i markovosti algoritmov blochnogo shifrovaniya”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 79–81

[2] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.

[3] Pogorelov B. A., Pudovkina M. A., “Variatsii ortomorfizmov i psevdoadamarovykh preobrazovanii na neabelevoi gruppe”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 24–27