On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 27-29
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that four nonabelian groups of order $2^m$, where $m \ge 4$, have cyclic subgroups of index $2$. Examples are well-known dihedral groups and generalized quaternion groups. Any nonabelian group $G$ of order $2^m$ with cyclic subgroups of index $2$ can be considered similar to the additive abelian group of the residue ring $\mathbb{Z}_{2^m}$, which is used as a key-addition group of ciphers. In this paper, we define two classes of transformations on $G$, which are called power piecewise affine. For each class we prove a bijection criterion. Using these criteria, we can fully classify orthomorphisms or their variations among described classes of power piecewise affine permutations.
Keywords:
nonabelian group, dihedral group, generalized quaternion group, orthomorphism.
Mots-clés : bijection criterion
Mots-clés : bijection criterion
@article{PDMA_2019_12_a6,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index~$2$},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {27--29},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/}
}
TY - JOUR AU - B. A. Pogorelov AU - M. A. Pudovkina TI - On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$ JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 27 EP - 29 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/ LA - ru ID - PDMA_2019_12_a6 ER -
%0 Journal Article %A B. A. Pogorelov %A M. A. Pudovkina %T On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$ %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 27-29 %N 12 %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/ %G ru %F PDMA_2019_12_a6
B. A. Pogorelov; M. A. Pudovkina. On a class of power piecewise affine permutations on nonabelian groups of order $2^m$ with cyclic subgroups of index $2$. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 27-29. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a6/
[1] Pogorelov B. A., Pudovkina M. A., “O neabelevykh gruppakh nalozheniya klyucha i markovosti algoritmov blochnogo shifrovaniya”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 79–81
[2] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.
[3] Pogorelov B. A., Pudovkina M. A., “Variatsii ortomorfizmov i psevdoadamarovykh preobrazovanii na neabelevoi gruppe”, Prikladnaya diskretnaya matematika. Prilozhenie, 2019, no. 12, 24–27