On mixing properties of modified multidimensional linear generators
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 141-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new class of shift registers of length $n$ with $r$-bit cells, $n,r>1$, called modified multidimensional linear generators (MMLG) is described. An experimental study of the mixing properties of shift registers of length $8$ over $V_{32}$ from the MMLG class is carried out. The feedback function of these registers is based on the round transformation of the lightweight block cipher SPECK. For such MMLG with different sets of pickup points $D \subseteq \{0,\ldots, 7\}$, the local $(0,256)$-exponents of mixing matrices $M$ are calculated as the smallest positive integer $\gamma$ such that, for any natural $t \ge \gamma$, all the columns of the matrix $M^t$ with numbers $1, \ldots, 32$ are positive. The $0$-indexes of perfection are calculated as the smallest values of the degrees of the register transformations, for which each coordinate functions of output cell essentially depends on all input variables. For MMLG with pickup points with numbers $0$ and $7$, the values of the local exponent and the local index of perfection are equal to $17$. The obtained values are compared with the local exponents and local indexes of perfection for structurally similar schemes based on modified additive generators (MAG). The comparison shows that the generators have similar mixing properties. However, unlike the considered class of shift registers based on MAG, the MMLG class is interesting for usage in conditions of limited resources.
Keywords: modified multidimensional linear generator, mixing properties, matrix-graph approach, mixing matrix, index of perfection, shift register, exponent, SPECK.
@article{PDMA_2019_12_a40,
     author = {I. I. Khairullin},
     title = {On mixing properties of modified multidimensional linear generators},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {141--145},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a40/}
}
TY  - JOUR
AU  - I. I. Khairullin
TI  - On mixing properties of modified multidimensional linear generators
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 141
EP  - 145
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a40/
LA  - ru
ID  - PDMA_2019_12_a40
ER  - 
%0 Journal Article
%A I. I. Khairullin
%T On mixing properties of modified multidimensional linear generators
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 141-145
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a40/
%G ru
%F PDMA_2019_12_a40
I. I. Khairullin. On mixing properties of modified multidimensional linear generators. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 141-145. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a40/

[1] Fomichev V. M., Melnikov D. A., Kriptograficheskie metody zaschity informatsii, v. 1, Matematicheskie aspekty, Yurait, M., 2017

[2] Fomichev V. M., Avezova Ya. A., Koreneva A. M., Kyazhin S. N., “Primitivity and local primitivity of digraphs and nonnegative matrices”, J. Appl. Industr. Math., 12:3 (2018), 453–469 | DOI | MR | Zbl

[3] Fomichev V. M., Koreneva A. M., “On Efficiency of Block Encryption by Improved Key Schedule”, CTCrypt-2016 (Yaroslavl) https://ctcrypt.ru/files/files/2016/12 fomichev.pdf

[4] Fomichev V. M., Zadorozhnyi D. I., Koreneva A. M., Tulebaev A. I., “O klyuchevom raspisanii na osnove modifitsirovannogo additivnogo generatora”, RusKripto-2018 (Moskva) https://www.ruscrypto.ru/resource/archive/rc2018/files/02_Koreneva.pdf

[5] Dmukh A., Trifonov D., Chukhno A., “O modifikatsii otechestvennogo nizkoresursnogo kriptograficheskogo algoritma 2-GOST i voprosakh ego realizatsii na PLIS”, RusKripto-2018 (Moskva) https://www.ruscrypto.ru/resource/archive/rc2018/files/02_Dmukh_Trifonov_Chukhno.pdf

[6] Beaulieu R., Shors D., Smith J., et al., The SIMON and SPECK families of lightweight block ciphers, , 2013 https://eprint.iacr.org/2013/404.pdf