Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2019_12_a4, author = {E. M. Melnichuk and S. A. Novoselov}, title = {On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {21--24}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/} }
TY - JOUR AU - E. M. Melnichuk AU - S. A. Novoselov TI - On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$ JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 21 EP - 24 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/ LA - ru ID - PDMA_2019_12_a4 ER -
%0 Journal Article %A E. M. Melnichuk %A S. A. Novoselov %T On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$ %J Prikladnaya Diskretnaya Matematika. Supplement %D 2019 %P 21-24 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/ %G ru %F PDMA_2019_12_a4
E. M. Melnichuk; S. A. Novoselov. On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 21-24. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/
[1] Singh V., Zatysev A., McGuire G., On the Characteristic Polynomial of Frobenius of Supersingular Abelian Varieties of Dimension up to 7 over Finite Fields, 2010, arXiv: 1011.2257
[2] Novoselov S. A., “Hyperelliptic curves, Cartier — Manin matrices and Legendre polynomials”, Prikladnaya diskretnaya matematika, 2017, no. 37, 20–31 | MR
[3] Melnichuk E. M., Novoselov S. A., “$p$-Rangi giperellipticheskikh krivykh roda 3 s netrivialnoi gruppoi avtomorfizmov”, Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo, 56 (2018), 188–192
[4] Bouw I. I., Diem C., Scholten J., “Ordinary elliptic curves of high rank over with constant $j$-invariant”, Manuscripta Mathematica, 114:4 (2004), 487–501 | DOI | MR | Zbl
[5] Novoselov S. A., Counting points on hyperelliptic curves of type $y^2 = x^{2g+ 1}+ ax^{g+ 1}+ bx$, 2019, arXiv: 1902.05992 | MR | Zbl