On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 21-24

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study characteristic polynomials for some families of $p$-rank $1$ genus $2$ and $3$ hyperelliptic curves over finite field. $p$-Rank is an important invariant of the curves. It imposes restrictions on the coefficients of the characteristic polynomials and, therefore, on the order of the Jacobian. In this work, we distinguish several classes of $p$-rank $1$ curves among curves with authomorphims and find characteristic polynomials for these curves modulo $p$.
Keywords: hyperelliptic curves, $p$-rank, characteristic polynomial, authomorphism group.
@article{PDMA_2019_12_a4,
     author = {E. M. Melnichuk and S. A. Novoselov},
     title = {On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {21--24},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/}
}
TY  - JOUR
AU  - E. M. Melnichuk
AU  - S. A. Novoselov
TI  - On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 21
EP  - 24
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/
LA  - ru
ID  - PDMA_2019_12_a4
ER  - 
%0 Journal Article
%A E. M. Melnichuk
%A S. A. Novoselov
%T On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 21-24
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/
%G ru
%F PDMA_2019_12_a4
E. M. Melnichuk; S. A. Novoselov. On characteristic polynomials for some genus $2$ and $3$ curves with $p$-rank~$1$. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 21-24. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a4/