Cryptanalysis of the ACBF encryption system
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 90-93
Cet article a éte moissonné depuis la source Math-Net.Ru
The ACBF encryption system with a functional key is considered. A public key in the cryptosystem is a vectorial Boolean function $f$ in $n$ variables obtained by permutation and negation operations on variables and coordinate functions of a bijective vectorial Boolean function $g$, that is, $f(x)=\pi_2(g^{\sigma_2}(\pi_1(x^{\sigma_1})))$, $\pi_1,\pi_2\in\mathbb{S}_n$ and $\sigma_1,\sigma_2\in\mathbb{F}_2^n$ are key parameters. A private key is $f^{-1}$. For two subsets of key parameters, namely for $\{\pi_1\}$ and $\{\pi_1,\pi_2\}$, attacks with known plaintexts are proposed.
Keywords:
cryptosystem ACBF, vectorial Boolean functions, asymmetric cryptosystem
Mots-clés : cryptanalysis.
Mots-clés : cryptanalysis.
@article{PDMA_2019_12_a27,
author = {I. V. Borovkova and I. A. Pankratova},
title = {Cryptanalysis of the {ACBF} encryption system},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {90--93},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a27/}
}
I. V. Borovkova; I. A. Pankratova. Cryptanalysis of the ACBF encryption system. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 90-93. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a27/
[1] Agibalov G. P., Pankratova I. A., “Asymmetric cryptosystems on Boolean functions”, Prikladnaya diskretnaya matematika, 2018, no. 40, 23–33 | MR