Properties of associated Boolean functions of quadratic APN functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 77-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function $F:\mathbb{F}_2^n\to \mathbb{F}_2^n$, it is defined the associated Boolean function $\gamma_F$ in $2n$ variables as follows: $\gamma_F(a,b)=1$ if $a\neq\mathbf{0}$ and equation $F(x)+F(x+a)=b$ has solutions. A vectorial Boolean function $F$ from $\mathbb{F}_2^n$ to $\mathbb{F}_2^n$ is called almost perfect nonlinear (APN) if equation $F(x) + F(x + a)=b$ has at most $2$ solutions for all vectors $a,b\in\mathbb{F}_2^n$, where $a$ is nonzero. In case when $F$ is a quadratic APN function its associated function has the form $\gamma_F(a,b) = \Phi_F(a) \cdot b + \varphi_F(a) + 1$ for appropriate functions $\Phi_F:\mathbb{F}_2^n\to \mathbb{F}_2^n$ and $\varphi_F:\mathbb{F}_2^n\to \mathbb{F}_2$. We study properties of functions $\Phi_F$ and $\varphi_F$, in particular their degrees.
Keywords: APN functions, associated Boolean functions, differential equivalence.
@article{PDMA_2019_12_a23,
     author = {A. A. Gorodilova},
     title = {Properties of associated {Boolean} functions of quadratic {APN} functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {77--79},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a23/}
}
TY  - JOUR
AU  - A. A. Gorodilova
TI  - Properties of associated Boolean functions of quadratic APN functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 77
EP  - 79
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a23/
LA  - en
ID  - PDMA_2019_12_a23
ER  - 
%0 Journal Article
%A A. A. Gorodilova
%T Properties of associated Boolean functions of quadratic APN functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 77-79
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a23/
%G en
%F PDMA_2019_12_a23
A. A. Gorodilova. Properties of associated Boolean functions of quadratic APN functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 77-79. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a23/

[1] Nyberg K., “Differentially uniform mappings for cryptography.”, EUROCRYPT'93, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Glukhov M. M., “On the approximation of discrete functions by linear functions”, Matematicheskie Voprosy Kriptografii, 7:4 (2016), 29–50 (in Russian) | DOI | MR

[3] Carlet C., Charpin P., Zinoviev V., “Codes, bent functions and permutations suitable for DES-like cryptosystems”, Designs, Codes and Cryptography, 15:2 (1998), 125–156 | DOI | MR | Zbl

[4] Gorodilova A., “On the differential equivalence of APN functions”, Cryptography and Communications, 2019 | DOI | MR | Zbl

[5] Boura C., Canteaut A., Jean J., Suder V., “Two notions of differential equivalence on S-boxes”, Designs, Codes and Cryptography, 87:2–3 (2019), 185–202 | DOI | MR | Zbl

[6] Gorodilova A., “The linear spectrum of quadratic APN functions”, Prikladnaya Diskretnaya Matematika, 2016, no. 4(34), 5–16 (in Russian) | DOI | MR