Class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb{Z}_{2^n}$
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 75-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a class of functions built with the help of significant bits sequences on the ring $ \mathbb{Z}_{2 ^ n} $. This class is built with the use of a function $ \psi: \mathbb{Z}_{2 ^ n} \rightarrow \mathbb{Z}_2$. In public literature, there are results for a linear function $ \psi $. Here, we use a non-linear $ \psi $ function for this set. The period of a polynomial $F$ in the ring $ \mathbb{Z}_{2^n} $ is equal to $ T(F \bmod 2)2^{\alpha} $, where $ \alpha \in \{0,\ldots, n-1\} $. The polynomials for which $ T(F) = T(F \bmod 2) $, i.e. $ \alpha = 0 $, are called marked polynomials. For our class, we use a marked polynomial of the maximum period. We show the bounds of the given class: non-linearity, the weight of the functions, the Hamming distance between functions. The Hamming distance between these functions and functions of other known classes is also given.
Keywords: Boolean functions, linear recurrent sequences, significant bits sequences.
@article{PDMA_2019_12_a22,
     author = {D. H. Hern\'andez Piloto},
     title = {Class of {Boolean} functions constructed using significant bits of linear recurrences over the ring $\mathbb{Z}_{2^n}$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {75--77},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a22/}
}
TY  - JOUR
AU  - D. H. Hernández Piloto
TI  - Class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb{Z}_{2^n}$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 75
EP  - 77
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a22/
LA  - ru
ID  - PDMA_2019_12_a22
ER  - 
%0 Journal Article
%A D. H. Hernández Piloto
%T Class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb{Z}_{2^n}$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 75-77
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a22/
%G ru
%F PDMA_2019_12_a22
D. H. Hernández Piloto. Class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb{Z}_{2^n}$. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 75-77. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a22/

[1] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matematicheskii sbornik, 184:3 (1993), 21–56 | Zbl

[2] Bylkov D. N., Kamlovskii O. V., “Parametry bulevykh funktsii, postroennykh s ispolzovaniem starshikh koordinatnykh posledovatelnostei lineinykh rekurrent”, Matematicheskie voprosy kriptografii, 3:4 (2012), 25–53 | DOI

[3] Kamlovskii O. V., “Nelineinost odnogo klassa bulevykh funktsii, postroennykh s ispolzovaniem dvoichnykh razryadnykh posledovatelnostei lineinykh rekurrent nad koltsom $\mathbb{Z}_{2^n}$”, Matematicheskie voprosy kriptografii, 7:3 (2016), 29–46 | DOI | MR

[4] Bylkov D. N., “Ob odnom klasse bulevykh funktsii, postroennykh s ispolzovaniem starshikh razryadnykh posledovatelnostei lineinykh rekurrent”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 59–60