Properties of bent functions constructed by a given bent function using subspaces
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 50-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of a construction $f \oplus \mathrm{Ind}_L$, where $f$ is a bent function in $2k$ variables and $L$ is an affine subspace, generating bent functions under some conditions are considered. It is proven that the numbers of bent functions generated by $(k + 1)$-dimensional subspaces for a given bent function and its dual function are equal. Some experimental results for bent functions in $6$ and $8$ variables reflecting the number of generated bent functions, equality and inequality of this number for a given bent function and its dual function and nonexistence of generated bent functions if subspaces have some fixed dimensions are presented. Theorem (2018) on subspace connections for bent functions $f$ and $f(x_1, \ldots, x_{2k}) \oplus x_{2k + 1}x_{2k + 2}$ (in context of the considered construction) is strengthened.
Keywords: Boolean functions, bent functions, subspaces, affinity.
@article{PDMA_2019_12_a13,
     author = {N. A. Kolomeets},
     title = {Properties of bent functions constructed by a given bent function using subspaces},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {50--53},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a13/}
}
TY  - JOUR
AU  - N. A. Kolomeets
TI  - Properties of bent functions constructed by a given bent function using subspaces
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 50
EP  - 53
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a13/
LA  - ru
ID  - PDMA_2019_12_a13
ER  - 
%0 Journal Article
%A N. A. Kolomeets
%T Properties of bent functions constructed by a given bent function using subspaces
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 50-53
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a13/
%G ru
%F PDMA_2019_12_a13
N. A. Kolomeets. Properties of bent functions constructed by a given bent function using subspaces. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 50-53. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a13/

[1] Kolomeets N. A., “O nekotorykh svoistvakh konstruktsii bent-funktsii s pomoschyu podprostranstv proizvolnoi razmernosti”, Prikladnaya diskretnaya matematika. Prilozhenie, 2018, no. 11, 41–43

[2] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[3] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, 2-e izd., MTsNMO, M., 2012, 584 pp.

[4] Tokareva N. N., Bent Functions, Results and Applications to Cryptography, Acad. Press, Elsevier, 2015 | MR | Zbl

[5] Carlet C., “Two new classes of bent functions”, LNCS, 765, 1994, 77–101 | MR | Zbl

[6] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl