Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 44-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we list all possible characteristic polynomials of the Frobenius endomorphism for genus $3$ hyperelliptic curves of type $y^2 = x^7 + a x^4 + b x$ over finite field $\mathbb{F}_q$ of characteristic $p>3$.
Keywords: hyperelliptic curves, characteristic polynomials, point-counting
Mots-clés : genus $3$.
@article{PDMA_2019_12_a11,
     author = {S. A. Novoselov and Y. F. Boltnev},
     title = {Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {44--46},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a11/}
}
TY  - JOUR
AU  - S. A. Novoselov
AU  - Y. F. Boltnev
TI  - Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2019
SP  - 44
EP  - 46
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a11/
LA  - en
ID  - PDMA_2019_12_a11
ER  - 
%0 Journal Article
%A S. A. Novoselov
%A Y. F. Boltnev
%T Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2019
%P 44-46
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2019_12_a11/
%G en
%F PDMA_2019_12_a11
S. A. Novoselov; Y. F. Boltnev. Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 44-46. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a11/

[1] Novoselov S. A., Counting Points on Hyperelliptic Curves of Type $y^2 = x^{2g+ 1}+ ax^{g+ 1}+ bx$, 2019, arXiv: 1902.05992 | MR | Zbl

[2] Satoh T., “Generating genus two hyperelliptic curves over large characteristic finite fields”, LNCS, 5479, 2009, 536–553 | MR | Zbl

[3] Guillevic A., Vergnaud D., “Genus 2 hyperelliptic curve families with explicit Jacobian order evaluation and pairing-friendly constructions”, LNCS, 7708, 2012, 234–253 | MR

[4] Schoof R., “Counting points on elliptic curves over finite fields.”, J. de théorie des nombres de Bordeaux, 7:1 (1995), 219–254 | MR | Zbl