Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields
Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 44-46
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work, we list all possible characteristic polynomials of the Frobenius endomorphism for genus $3$ hyperelliptic curves of type $y^2 = x^7 + a x^4 + b x$ over finite field $\mathbb{F}_q$ of characteristic $p>3$.
Keywords:
hyperelliptic curves, characteristic polynomials, point-counting
Mots-clés : genus $3$.
Mots-clés : genus $3$.
@article{PDMA_2019_12_a11,
author = {S. A. Novoselov and Y. F. Boltnev},
title = {Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {44--46},
year = {2019},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PDMA_2019_12_a11/}
}
TY - JOUR AU - S. A. Novoselov AU - Y. F. Boltnev TI - Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2019 SP - 44 EP - 46 IS - 12 UR - http://geodesic.mathdoc.fr/item/PDMA_2019_12_a11/ LA - en ID - PDMA_2019_12_a11 ER -
S. A. Novoselov; Y. F. Boltnev. Characteristic polynomials of the curve $y^2=x^7+ax^4+bx$ over finite fields. Prikladnaya Diskretnaya Matematika. Supplement, no. 12 (2019), pp. 44-46. http://geodesic.mathdoc.fr/item/PDMA_2019_12_a11/
[1] Novoselov S. A., Counting Points on Hyperelliptic Curves of Type $y^2 = x^{2g+ 1}+ ax^{g+ 1}+ bx$, 2019, arXiv: 1902.05992 | MR | Zbl
[2] Satoh T., “Generating genus two hyperelliptic curves over large characteristic finite fields”, LNCS, 5479, 2009, 536–553 | MR | Zbl
[3] Guillevic A., Vergnaud D., “Genus 2 hyperelliptic curve families with explicit Jacobian order evaluation and pairing-friendly constructions”, LNCS, 7708, 2012, 234–253 | MR
[4] Schoof R., “Counting points on elliptic curves over finite fields.”, J. de théorie des nombres de Bordeaux, 7:1 (1995), 219–254 | MR | Zbl