Construction of a~class of functions on finite fields using linear recurrences over Galois rings
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a class of functions over a finite field $\mathrm{GF}(q)$ constructed on the basis of linear recurring sequences (LRS) over a ring $\mathrm{GR}(q^n,p^n)$ with a distinguished characteristic polynomial. The order of the arguments of the functions in this class is obtained from the set of LRS over the finite field, and the values of the functions are obtained from the complicated LRS over the ring. When some conditions are met, for the proximity $C(f)$ of the studied functions $f$ in $m$ variables to the class of affine functions, the estimate $C(f)\le q^{(m+n-1)/2}(p^{n-1}-1)(q-1)^{1/2}$ is proved. The power of a class of functions and its automaton implementation are also studied.
Keywords: linear recurring sequences, complication of sequences, finite fields, Galois ring, cross-correlation function, estimation of trigonometric sum.
@article{PDMA_2018_11_a9,
     author = {A. D. Bugrov},
     title = {Construction of a~class of functions on finite fields using linear recurrences over {Galois} rings},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {34--39},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a9/}
}
TY  - JOUR
AU  - A. D. Bugrov
TI  - Construction of a~class of functions on finite fields using linear recurrences over Galois rings
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 34
EP  - 39
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a9/
LA  - ru
ID  - PDMA_2018_11_a9
ER  - 
%0 Journal Article
%A A. D. Bugrov
%T Construction of a~class of functions on finite fields using linear recurrences over Galois rings
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 34-39
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a9/
%G ru
%F PDMA_2018_11_a9
A. D. Bugrov. Construction of a~class of functions on finite fields using linear recurrences over Galois rings. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 34-39. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a9/

[1] Bylkov D. N., “Ob odnom klasse bulevykh funktsii, postroennykh s ispolzovaniem starshikh razryadnykh posledovatelnostei lineinykh rekurrent”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 59–60

[2] Bylkov D. N., Kamlovskii O. V., “Parametry bulevykh funktsii, postroennykh s ispolzovaniem starshikh koordinatnykh posledovatelnostei lineinykh rekurrent”, Matematicheskie voprosy kriptografii, 3:4 (2012), 25–53 | DOI

[3] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Matem. sbornik, 184:3 (1993), 21–56 | MR | Zbl

[4] Nechaev A. A., “Kod Kerdoka v tsiklicheskoi forme”, Diskretnaya matematika, 1:4 (1989), 123–139 | MR | Zbl

[5] Pogorelov B. A., Sachkov V. N., Slovar kriptograficheskikh terminov, MTsNMO, M., 2006

[6] Kuzmin A. S., Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad koltsami Galua”, Algebra i logika, 34:2 (1995), 169–189 | MR | Zbl

[7] Kamlovskii O. V., “Chastotnye kharakteristiki razryadnykh posledovatelnostei lineinykh rekurrent nad koltsami Galua”, Izv. RAN. Ser. matem., 77:6 (2013), 71–96 | DOI | MR | Zbl