$k$-transitivity of a~class of block transformations
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 21-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be an arbitrary finite set, $\mathcal Q(\Omega)$ be the collection of all binary quasigroups defined on the set $\Omega$, and $\Sigma^F\colon\Omega^n\to\Omega^n$ be the mapping that are implemented by a network $\Sigma$ of width $n$ with one binary operation $F\in\mathcal Q(\Omega)$. In this paper, we declare a continuation of research related to $k$-transitivity of the class $\{\Sigma^F\colon F\in\mathcal Q(\Omega)\}$ in case $k\geqslant2$. Namely, we define conditions for the $k$-transitivity of the class $\{\Sigma^F\colon F\in\mathcal Q(\Omega)\}$, propose one effective method for verification of network's $k$-transitivity for all sufficiently large finite sets $\Omega$, and give parameters of the result of the algorithm for constructing network $\Sigma$ such that the class $\{\Sigma^F\colon F\in\mathcal Q(\Omega)\}$ is $k$-transitive.
Keywords: network, $k$-transitivity.
Mots-clés : quasigroup
@article{PDMA_2018_11_a5,
     author = {I. V. Cherednik},
     title = {$k$-transitivity of a~class of block transformations},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {21--23},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a5/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - $k$-transitivity of a~class of block transformations
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 21
EP  - 23
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a5/
LA  - ru
ID  - PDMA_2018_11_a5
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T $k$-transitivity of a~class of block transformations
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 21-23
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a5/
%G ru
%F PDMA_2018_11_a5
I. V. Cherednik. $k$-transitivity of a~class of block transformations. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 21-23. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a5/

[1] Cherednik I. V., “Odin podkhod k postroeniyu tranzitivnogo mnozhestva blochnykh preobrazovanii”, Prikladnaya diskretnaya matematika, 2017, no. 38, 5–34