A compact realisation of the multiplicative inverse function in the finite field $\mathbb F_{2^{16}}$
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 142-143
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, the well-known method for compact realization of the multiplicative inverse function in the field $\mathbb F_{2^8}$ is researched and expanded to the $\mathbb F_{2^{16}}$ field. We have got a size estimation for the multiplicative inverse function in the $\mathbb F_{2^{16}}$ field and proved a theorem showing that there exists a compact realization of the multiplicative inverse function in the field $\mathbb F_{2^{16}}$ that uses for its calculations at most 336 XORs and 189 ANDs, or 777 GE.
Keywords:
block cipher, Galois field, Galois field multiplicative inverse function, lightweight cryptography, gate equivalent (GE).
@article{PDMA_2018_11_a43,
author = {I. E. Kokoshinskiy},
title = {A compact realisation of the multiplicative inverse function in the finite field~$\mathbb F_{2^{16}}$},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {142--143},
year = {2018},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a43/}
}
TY - JOUR
AU - I. E. Kokoshinskiy
TI - A compact realisation of the multiplicative inverse function in the finite field $\mathbb F_{2^{16}}$
JO - Prikladnaya Diskretnaya Matematika. Supplement
PY - 2018
SP - 142
EP - 143
IS - 11
UR - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a43/
LA - ru
ID - PDMA_2018_11_a43
ER -
I. E. Kokoshinskiy. A compact realisation of the multiplicative inverse function in the finite field $\mathbb F_{2^{16}}$. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 142-143. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a43/
[1] Canright D., A Very Compact Rijndael S-box, Technical Report: NPS-MA-05-001, Naval Postgraduate School, 2004
[2] Canright D., “A very compact S-box for AES”, LNCS, 3659, 2005, 440–455
[3] Rijmen V., Efficient Implementation of the Rijndael S-box, Katholieke Universiteit Leuven, Dept. ESAT, Belgium, 2001
[4] Satoh A., Morioka S., Takano K., Munetoh S., “A compact Rijndael hardware architecture with S-box optimization”, ASIACRYPT 2001, LNCS, 2248, 2001, 239–254 | MR | Zbl