A compact realisation of the multiplicative inverse function in the finite field~$\mathbb F_{2^{16}}$
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 142-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the well-known method for compact realization of the multiplicative inverse function in the field $\mathbb F_{2^8}$ is researched and expanded to the $\mathbb F_{2^{16}}$ field. We have got a size estimation for the multiplicative inverse function in the $\mathbb F_{2^{16}}$ field and proved a theorem showing that there exists a compact realization of the multiplicative inverse function in the field $\mathbb F_{2^{16}}$ that uses for its calculations at most 336 XORs and 189 ANDs, or 777 GE.
Keywords: block cipher, Galois field, Galois field multiplicative inverse function, lightweight cryptography, gate equivalent (GE).
@article{PDMA_2018_11_a43,
     author = {I. E. Kokoshinskiy},
     title = {A compact realisation of the multiplicative inverse function in the finite field~$\mathbb F_{2^{16}}$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {142--143},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a43/}
}
TY  - JOUR
AU  - I. E. Kokoshinskiy
TI  - A compact realisation of the multiplicative inverse function in the finite field~$\mathbb F_{2^{16}}$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 142
EP  - 143
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a43/
LA  - ru
ID  - PDMA_2018_11_a43
ER  - 
%0 Journal Article
%A I. E. Kokoshinskiy
%T A compact realisation of the multiplicative inverse function in the finite field~$\mathbb F_{2^{16}}$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 142-143
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a43/
%G ru
%F PDMA_2018_11_a43
I. E. Kokoshinskiy. A compact realisation of the multiplicative inverse function in the finite field~$\mathbb F_{2^{16}}$. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 142-143. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a43/

[1] Canright D., A Very Compact Rijndael S-box, Technical Report: NPS-MA-05-001, Naval Postgraduate School, 2004

[2] Canright D., “A very compact S-box for AES”, LNCS, 3659, 2005, 440–455

[3] Rijmen V., Efficient Implementation of the Rijndael S-box, Katholieke Universiteit Leuven, Dept. ESAT, Belgium, 2001

[4] Satoh A., Morioka S., Takano K., Munetoh S., “A compact Rijndael hardware architecture with S-box optimization”, ASIACRYPT 2001, LNCS, 2248, 2001, 239–254 | MR | Zbl