On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 133-136
Cet article a éte moissonné depuis la source Math-Net.Ru
Generic-case approach to algorithmic problems was introduced by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. In this paper, we consider generic complexity of the discrete logarithm problem in elliptic curves over finite fields $\mathrm{GF}(p)$ with prime $p$. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the discrete logarithm problem is hard in the worst case.
Keywords:
generic complexity, discrete logarithm problem, elliptic curves.
@article{PDMA_2018_11_a40,
author = {A. N. Rybalov},
title = {On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {133--136},
year = {2018},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a40/}
}
TY - JOUR AU - A. N. Rybalov TI - On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2018 SP - 133 EP - 136 IS - 11 UR - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a40/ LA - ru ID - PDMA_2018_11_a40 ER -
A. N. Rybalov. On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 133-136. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a40/
[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: Derandomizing the XOR lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[3] Romankov V. A., Vvedenie v kriptografiyu, 2-e izd., ispr., FORUM, M., 2012, 240 pp.