Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2018_11_a40, author = {A. N. Rybalov}, title = {On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {133--136}, publisher = {mathdoc}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a40/} }
TY - JOUR AU - A. N. Rybalov TI - On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2018 SP - 133 EP - 136 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a40/ LA - ru ID - PDMA_2018_11_a40 ER -
%0 Journal Article %A A. N. Rybalov %T On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields %J Prikladnaya Diskretnaya Matematika. Supplement %D 2018 %P 133-136 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a40/ %G ru %F PDMA_2018_11_a40
A. N. Rybalov. On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 133-136. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a40/
[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: Derandomizing the XOR lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[3] Romankov V. A., Vvedenie v kriptografiyu, 2-e izd., ispr., FORUM, M., 2012, 240 pp.