Lower bound on the size of the largest metrically regular subset of the Boolean cube
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 14-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Strongly metrically regular subsets of the Boolean cube are studied. Iterative constructions of strongly metrically regular sets are presented. Formula for calculating the number of sets obtainable using these constructions is given. Special families of strongly regular sets are constructed and sizes of sets from these families are calculated. Obtained values give us lower bound on the size of the largest metrically regular subset of the Boolean cube with fixed covering radius.
Keywords: metrically regular set, metric complement.
@article{PDMA_2018_11_a3,
     author = {A. K. Oblaukhov},
     title = {Lower bound on the size of the largest metrically regular subset of the {Boolean} cube},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {14--16},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a3/}
}
TY  - JOUR
AU  - A. K. Oblaukhov
TI  - Lower bound on the size of the largest metrically regular subset of the Boolean cube
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 14
EP  - 16
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a3/
LA  - ru
ID  - PDMA_2018_11_a3
ER  - 
%0 Journal Article
%A A. K. Oblaukhov
%T Lower bound on the size of the largest metrically regular subset of the Boolean cube
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 14-16
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a3/
%G ru
%F PDMA_2018_11_a3
A. K. Oblaukhov. Lower bound on the size of the largest metrically regular subset of the Boolean cube. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 14-16. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a3/

[1] Oblaukhov A. K., “O metricheskom dopolnenii podprostranstv buleva kuba”, Diskretnyi analiz i issledovanie operatsii, 23:3 (2016), 93–106 | DOI | MR | Zbl

[2] Tokareva N., “Duality between bent functions and affine functions”, Discr. Math., 312:3 (2012), 666–670 | DOI | MR | Zbl

[3] Cusick T. W., Stanica P., Cryptographic Boolean Functions and Applications, Academic Press, 2017, 288 pp. | MR | Zbl