On integral distinguishers of block ciphers based on generalized Feistel schemes
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 87-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2002, L. Knudsen and D. Wagner introduced the integral cryptanalysis technique which has become the powerful tool to assess the security of block ciphers such as AES, PRESENT, DES, SIMON 32, CAMELLIA, KHAZAD, RECTANGLE, PRINCE, HIGHT. The main idea of the technique is based on construction of an integral distinguisher, which is used to recover some key bits. Many block ciphers are based on different generalizations of the Feistel scheme. In this paper, we have built the 3-round integral distinguisher for the PICARO block cipher, which is based on a generalized Feistel scheme. Non-bijective PICARO $s$-boxes as well as the expanding matrix are studied to check a propagation of the integral properties. We have also constructed integral distinguishers for some generalized Feistel schemes.
Keywords: integral cryptanalysis, PICARO block cipher, generalized Feistel scheme, non-bijective $s$-boxes.
@article{PDMA_2018_11_a26,
     author = {M. A. Sorokin and M. A. Pudovkina},
     title = {On integral distinguishers of block ciphers based on generalized {Feistel} schemes},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {87--89},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a26/}
}
TY  - JOUR
AU  - M. A. Sorokin
AU  - M. A. Pudovkina
TI  - On integral distinguishers of block ciphers based on generalized Feistel schemes
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 87
EP  - 89
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a26/
LA  - ru
ID  - PDMA_2018_11_a26
ER  - 
%0 Journal Article
%A M. A. Sorokin
%A M. A. Pudovkina
%T On integral distinguishers of block ciphers based on generalized Feistel schemes
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 87-89
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a26/
%G ru
%F PDMA_2018_11_a26
M. A. Sorokin; M. A. Pudovkina. On integral distinguishers of block ciphers based on generalized Feistel schemes. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 87-89. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a26/

[1] Knudsen L., Wagner D., “Integral cryptanalysis”, FSE 2002, LNCS, 2365, 2002, 112–127 | Zbl

[2] Todo Y., “Structural evaluation by generalized integral property”, EUROCRYPT 2015, LNCS, 9056, 2015, 287–314 | MR | Zbl

[3] Biryukov A., Shamir A., “Structural cryptanalysis of SASAS”, EUROCRYPT 2001, LNCS, 2045, 2001, 394–405 | MR | Zbl

[4] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, 384 pp.

[5] Piret G., Roche T., Carlet C., “PICARO – a block cipher allowing efficient higher-order side-channel resistance”, ACNS 2012, LNCS, 7341, 2012, 311–328

[6] Nyberg K., “Generalized Feistel networks”, ASIACRYPT 1996, LNCS, 1163, 1996, 90–104 | MR

[7] Hoang V. T., Rogaway P., “On generalized Feistel networks”, CRYPTO 2010, LNCS, 6223, 2010, 613–630 | MR | Zbl

[8] Nachef V., Volte E., Patarin J., “Differential attacks on generalized Feistel schemes”, CANS 2013, LNCS, 8257, 2013, 1–19 | MR