@article{PDMA_2018_11_a26,
author = {M. A. Sorokin and M. A. Pudovkina},
title = {On integral distinguishers of block ciphers based on generalized {Feistel} schemes},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {87--89},
year = {2018},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a26/}
}
TY - JOUR AU - M. A. Sorokin AU - M. A. Pudovkina TI - On integral distinguishers of block ciphers based on generalized Feistel schemes JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2018 SP - 87 EP - 89 IS - 11 UR - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a26/ LA - ru ID - PDMA_2018_11_a26 ER -
M. A. Sorokin; M. A. Pudovkina. On integral distinguishers of block ciphers based on generalized Feistel schemes. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 87-89. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a26/
[1] Knudsen L., Wagner D., “Integral cryptanalysis”, FSE 2002, LNCS, 2365, 2002, 112–127 | Zbl
[2] Todo Y., “Structural evaluation by generalized integral property”, EUROCRYPT 2015, LNCS, 9056, 2015, 287–314 | MR | Zbl
[3] Biryukov A., Shamir A., “Structural cryptanalysis of SASAS”, EUROCRYPT 2001, LNCS, 2045, 2001, 394–405 | MR | Zbl
[4] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, 384 pp.
[5] Piret G., Roche T., Carlet C., “PICARO – a block cipher allowing efficient higher-order side-channel resistance”, ACNS 2012, LNCS, 7341, 2012, 311–328
[6] Nyberg K., “Generalized Feistel networks”, ASIACRYPT 1996, LNCS, 1163, 1996, 90–104 | MR
[7] Hoang V. T., Rogaway P., “On generalized Feistel networks”, CRYPTO 2010, LNCS, 6223, 2010, 613–630 | MR | Zbl
[8] Nachef V., Volte E., Patarin J., “Differential attacks on generalized Feistel schemes”, CANS 2013, LNCS, 8257, 2013, 1–19 | MR