Analysis of the perfection and strong nonlinearity of encryption algorithms
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 74-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the experimental research results for characteristics of iterative block encryption algorithms based on the shift registers from the classes $R(8,32,3), R(15,32,5), R(16,32,5), R(32,32,9)$ and $R(33,32,11)$ where $R(n,32,m)$ is the class of shift registers of length $n$ with $m$ feedbacks over the set $V_{32}$ of $32$-dimensional binary vectors, $n>m\geq1$, $n,m\in\mathbb N$ (the generalized Feistel network). The researched characteristics are the indices of perfection and strong nonlinearity, i.e. the smallest numbers of rounds after which the product of round substitutions becomes perfect or strongly nonlinear respectively. Empirical estimates of these characteristics are presented. With the use of the results, the recommendations for the number of encryption rounds are given.
Keywords: strong nonlinearity, function perfection, exponent of digraph.
@article{PDMA_2018_11_a22,
     author = {A. R. Miftakhutdinova},
     title = {Analysis of the perfection and strong nonlinearity of encryption algorithms},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {74--76},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a22/}
}
TY  - JOUR
AU  - A. R. Miftakhutdinova
TI  - Analysis of the perfection and strong nonlinearity of encryption algorithms
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2018
SP  - 74
EP  - 76
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2018_11_a22/
LA  - ru
ID  - PDMA_2018_11_a22
ER  - 
%0 Journal Article
%A A. R. Miftakhutdinova
%T Analysis of the perfection and strong nonlinearity of encryption algorithms
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2018
%P 74-76
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2018_11_a22/
%G ru
%F PDMA_2018_11_a22
A. R. Miftakhutdinova. Analysis of the perfection and strong nonlinearity of encryption algorithms. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 74-76. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a22/

[1] Fomichëv V. M., Melnikov D. A., Kriptograficheskie metody zaschity informatsii. Ch. 1. Matematicheskie aspekty, Uchebnik dlya akademicheskogo bakalavriata, Yurait, M., 2016, 209 pp.

[2] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112