@article{PDMA_2018_11_a11,
author = {N. A. Kolomeec},
title = {Properties of a~bent function construction by a~subspace of an arbitrary dimension},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {41--43},
year = {2018},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a11/}
}
N. A. Kolomeec. Properties of a bent function construction by a subspace of an arbitrary dimension. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 41-43. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a11/
[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[2] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, 2-e izd., MTsNMO, M., 2012, 584 pp.
[3] Tokareva N. N., Bent Functions, Results and Applications to Cryptography, Acad. Press Elsevier, 2015 | MR | Zbl
[4] Carlet C., “Two new classes of bent functions”, LNCS, 765, 1994, 77–101 | MR | Zbl
[5] Leander G., McGuire G., “Construction of bent functions from near-bent functions”, J. Combin. Theory. Ser. A, 116:4 (2009), 960–970 | DOI | MR | Zbl
[6] Canteaut A., Daum M., Dobbertin H., and Leander G., “Finding nonnormal bent functions”, Discr. Appl. Math., 154:2, 202–218 | DOI | MR | Zbl