Weight properties of primitive matrices
Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 10-12
Cet article a éte moissonné depuis la source Math-Net.Ru
For nonnegative $n\times n$ matrices ($n>2$), the results of researching the dependence of matrix primitivity on weight (quantity of positive elements) are presented, namely: 1) any matrix of a weight $k\le n$ is not primitive; 2) for $k=n+1,\dots,n^2-n+1$, there are both a not primitive matrix with weight $k$ and a primitive matrix with weight $k$ and exponent $\gamma $ where $n+2\lfloor\sqrt{2(n-1)}\rfloor\le\gamma+k\le n^2-n+3$; 3) any matrix with weight $k=n^2-n+2,\dots,n^2-1$ is primitive and its exponent $\gamma=2$. It is shown that, for some primitive matrices, the weight is not monotonically non-decreasing function of its degree.
Mots-clés :
primitive matrix
Keywords: exponent of matrix, weight of matrix.
Keywords: exponent of matrix, weight of matrix.
@article{PDMA_2018_11_a1,
author = {S. N. Kyazhin},
title = {Weight properties of primitive matrices},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {10--12},
year = {2018},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2018_11_a1/}
}
S. N. Kyazhin. Weight properties of primitive matrices. Prikladnaya Diskretnaya Matematika. Supplement, no. 11 (2018), pp. 10-12. http://geodesic.mathdoc.fr/item/PDMA_2018_11_a1/
[1] Bar-Gnar R. I., Fomichev V. M., “O minimalnykh primitivnykh matritsakh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 7–9
[2] Fomichev V. M., “Svoistva minimalnykh primitivnykh orgrafov”, Prikladnaya diskretnaya matematika, 2015, no. 2(28), 86–96