About generation of non-isomorphic vertex $k$-colorings
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 136-138
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we study the generation problem for non-isomorphic vertex and edge $k$-colorings of a given graph. An algorithm for generating all the non-isomorphic vertex $k$-colorings of a graph by the Reed–Faradzhev method without using an isomorphism testing technique is suggested. The problem of generating edge $k$-colorings is reduced to the problem of generating vertex $k$-colorings.
Keywords:
graph, coloring, vertex coloring.
Mots-clés : isomorphism
Mots-clés : isomorphism
@article{PDMA_2017_10_a52,
author = {M. B. Abrosimov and P. V. Razumovsky},
title = {About generation of non-isomorphic vertex $k$-colorings},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {136--138},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a52/}
}
M. B. Abrosimov; P. V. Razumovsky. About generation of non-isomorphic vertex $k$-colorings. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 136-138. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a52/
[1] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[2] Kharari F., Teoriya grafov, Mir, M., 1973, 296 pp. | MR
[3] Nauty and Traces: Graph Canonical Labeling and Automorphism Group Computation, , 2016 http://users.cecs.anu.edu.au/~bdm/nauty/
[4] McKay B. D., Piperno A., “Practical graph isomorphism”, J. Symbolic Computation, 2:60 (2013), 94–112 | MR