About generation of non-isomorphic vertex $k$-colorings
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 136-138
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the generation problem for non-isomorphic vertex and edge $k$-colorings of a given graph. An algorithm for generating all the non-isomorphic vertex $k$-colorings of a graph by the Reed–Faradzhev method without using an isomorphism testing technique is suggested. The problem of generating edge $k$-colorings is reduced to the problem of generating vertex $k$-colorings.
Keywords:
graph, coloring, vertex coloring.
Mots-clés : isomorphism
Mots-clés : isomorphism
@article{PDMA_2017_10_a52,
author = {M. B. Abrosimov and P. V. Razumovsky},
title = {About generation of non-isomorphic vertex $k$-colorings},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {136--138},
publisher = {mathdoc},
number = {10},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a52/}
}
TY - JOUR AU - M. B. Abrosimov AU - P. V. Razumovsky TI - About generation of non-isomorphic vertex $k$-colorings JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2017 SP - 136 EP - 138 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a52/ LA - ru ID - PDMA_2017_10_a52 ER -
M. B. Abrosimov; P. V. Razumovsky. About generation of non-isomorphic vertex $k$-colorings. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 136-138. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a52/