About primitive regular graphs with exponent~2
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 131-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Primitive regular graphs with exponent 2 are considered. We refine the known result that the number of edges of an undirected $n$-vertex graph with exponent 2 must be at least $(3n-3)/2$ for odd $n$ and $(3n-2)/2$ for an even $n$. For regular $n$-vertex graph with exponent 2 and $n>4$, the minimal number of edges is $2n$.
Keywords: primitive graph, exponent, regular graph.
Mots-clés : primitive matrix
@article{PDMA_2017_10_a50,
     author = {M. B. Abrosimov and S. V. Kostin},
     title = {About primitive regular graphs with exponent~2},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {131--134},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a50/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - S. V. Kostin
TI  - About primitive regular graphs with exponent~2
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 131
EP  - 134
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a50/
LA  - ru
ID  - PDMA_2017_10_a50
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A S. V. Kostin
%T About primitive regular graphs with exponent~2
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 131-134
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a50/
%G ru
%F PDMA_2017_10_a50
M. B. Abrosimov; S. V. Kostin. About primitive regular graphs with exponent~2. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 131-134. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a50/