About primitive regular graphs with exponent~2
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 131-134
Voir la notice de l'article provenant de la source Math-Net.Ru
Primitive regular graphs with exponent 2 are considered. We refine the known result that the number of edges of an undirected $n$-vertex graph with exponent 2 must be at least $(3n-3)/2$ for odd $n$ and $(3n-2)/2$ for an even $n$. For regular $n$-vertex graph with exponent 2 and $n>4$, the minimal number of edges is $2n$.
Keywords:
primitive graph, exponent, regular graph.
Mots-clés : primitive matrix
Mots-clés : primitive matrix
@article{PDMA_2017_10_a50,
author = {M. B. Abrosimov and S. V. Kostin},
title = {About primitive regular graphs with exponent~2},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {131--134},
publisher = {mathdoc},
number = {10},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a50/}
}
M. B. Abrosimov; S. V. Kostin. About primitive regular graphs with exponent~2. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 131-134. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a50/