The unreliability of logic circuits of unreliable functional elements
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 128-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the realization of Boolean functions by circuits from unreliable functional elements in any full finite basis. We assume that each element of the circuit is exposed to arbitrary faults, and the elements faults are statistically independent. We show that any Boolean function can be realized by a circuit the unreliability of which is not more than 5.17 times greater than the unreliability of “worst” (the most unreliable) element from the basis.
Keywords: unreliable functional elements, circuit reliability, circuit unreliability, malfunctions of elements.
@article{PDMA_2017_10_a49,
     author = {M. A. Alekhina and Yu. S. Gusynina and T. A. Shornikova},
     title = {The unreliability of logic circuits of unreliable functional elements},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {128--130},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a49/}
}
TY  - JOUR
AU  - M. A. Alekhina
AU  - Yu. S. Gusynina
AU  - T. A. Shornikova
TI  - The unreliability of logic circuits of unreliable functional elements
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 128
EP  - 130
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a49/
LA  - ru
ID  - PDMA_2017_10_a49
ER  - 
%0 Journal Article
%A M. A. Alekhina
%A Yu. S. Gusynina
%A T. A. Shornikova
%T The unreliability of logic circuits of unreliable functional elements
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 128-130
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a49/
%G ru
%F PDMA_2017_10_a49
M. A. Alekhina; Yu. S. Gusynina; T. A. Shornikova. The unreliability of logic circuits of unreliable functional elements. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 128-130. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a49/

[1] V. B. Alekseev, V. I. Dmitriev (otv. red.), Izbrannye trudy S. V. Yablonskogo, MAKS Press, M., 2004, 584 pp. | MR

[2] Alekhina M. A., Sintez, nadezhnost i slozhnost skhem iz nenadezhnykh funktsionalnykh elementov, Dis. $\dots$ dokt. fiz.-mat. nauk, Penza, 2004, 169 pp.

[3] Alekhina M. A., Vasin A. V., “Dostatochnye usloviya realizatsii bulevykh funktsii asimptoticheski optimalnymi skhemami s nenadezhnostyu $2\varepsilon$”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2010, no. 5, 79–82 | MR

[4] Alekhina M. A., Grabovskaya S. M., “O nadezhnosti nevetvyaschikhsya programm v proizvolnom polnom konechnom bazise”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2012, no. 2, 13–22 | MR | Zbl

[5] Alekhina M. A., “Nenadëzhnost skhem pri konstantnykh neispravnostyakh na vkhodakh i vykhodakh elementov”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 100–102 | DOI

[6] Alekhina M. A., Logvina O. A., “Nenadëzhnost skhem pri slipaniyakh vkhodov elementov”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 98–100

[7] Aksenov S. I., “O nadezhnosti skhem nad proizvolnoi polnoi sistemoi funktsii pri inversnykh neispravnostyakh na vykhodakh elementov”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Estestvennye nauki, 2005, no. 6(21), 42–55

[8] Alekhina M. A., Vasin A. V., “O nadezhnosti skhem v bazisakh, soderzhaschikh funktsii ne bolee chem trekh peremennykh”, Uchenye zapiski Kazanskogo gosudarstvennogo universiteta. Ser. Fiziko-matematicheskie nauki, 151, no. 2, 2009, 25–35

[9] Alekhina M. A., “O nadezhnosti skhem v proizvolnom polnom konechnom bazise pri odnotipnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Diskretnaya matematika, 24:3 (2012), 17–24 | DOI | MR | Zbl